首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The ability of the lignino-cellulolytic actinomyceteStreptomyces viridosporus T7A to attack purified fractions of kraft lignin was examined. In the presence of 0.3% yeast extract, high-molecular weight kraft lignin (MW>3000, ether-insoluble fraction) does not affect growth of this microorganism significantly, whereas low-molecular weight kraft lignin (MW<3000, ether-soluble fraction) inhibits its development. Accordingly, average molecular weight of the ether-insoluble fraction after bacterial growth remained unaltered, as measured by Sephadex G-50 gel permeation chromatography. Slight modifications were detected by high performance liquid chromatography in the ether-soluble fraction after incubation with the microorganism.S. viridosporus T7A partially decolorized Remazol Brilliant Blue R during growth on wheat lignocellulose. However, decolorization of either fraction of kraft lignin was not observed. These results suggest that the filamentous bacteriumS. viridosporus T7A is not suitable for pulp mill effluent treatment.  相似文献   

2.
Peroxidase-deficient mutants of the lignin-degrading bacterium Streptomyces viridosporus T7A were screened for their production of acid-precipitable polymeric lignin, extracellular peroxidases and esterases, and immunoreactivities against a polyclonal antibody produced against electrophoretically purified peroxidase isoform P3 of wild-type S. viridosporus. The mutants showed diminished abilities to solubilize lignin and produce acid-precipitable polymeric lignin. Their peroxidase activities were decreased, and their esterase production patterns were altered. Western immunoblots demonstrated that the mutants produced proteins immunologically reactive with the antibody, but with different mobilities from those of wild-type proteins. These findings confirm a direct role for peroxidases in lignin solubilization. They also indicate a possible role for esterases.  相似文献   

3.
Peroxidase-deficient mutants of the lignin-degrading bacterium Streptomyces viridosporus T7A were screened for their production of acid-precipitable polymeric lignin, extracellular peroxidases and esterases, and immunoreactivities against a polyclonal antibody produced against electrophoretically purified peroxidase isoform P3 of wild-type S. viridosporus. The mutants showed diminished abilities to solubilize lignin and produce acid-precipitable polymeric lignin. Their peroxidase activities were decreased, and their esterase production patterns were altered. Western immunoblots demonstrated that the mutants produced proteins immunologically reactive with the antibody, but with different mobilities from those of wild-type proteins. These findings confirm a direct role for peroxidases in lignin solubilization. They also indicate a possible role for esterases.  相似文献   

4.
Summary Numerous single-ring, aromatic, phenolic and non-phenolic compounds were tested as substrates of Streptomyces viridosporus T7A extracellular lignin peroxidase. Oxidations were monitored by spectroscopy, with and without 4-aminoantipyrine (4-AAP) as a color-forming reagent. The oxidation of phenols containing one or no carbon groups in the para position resulted in coupling with 4-AAP to form a red color. Thin layer chromatography and mass spectroscopy showed that the oxidation of vanillic acid (4-hydroxy-3-methoxybenzoic acid) and syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) resulted in a direct coupling between 4-AAP and the phenol ring to form a quinone structure. In the reaction with vanillyl acetone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and 4-AAP, 4-AAP coupled to Á-carbon of vanillyl acetone. As shown by UV-visible spectroscopy, S. viridosporus T7A peroxidase oxidized phenolic compounds, but was unable to oxidize non-phenolic ones.Paper no. 91 517 of the Idaho Agricultural Experiment Station Correspondence to: D. L. Crawford  相似文献   

5.
Crude peroxidase preparations from the lignocellulose-degrading actinomycete, Streptomyces viridosporus T7A, were shown to decolorize several azo dye isomers and showed a correlation of dye structure to degradability similar to that shown by fungal Mn-peroxidase, an enzyme not previously described in actinomycetes. Addition of the heme-peroxidase inhibitor KCN did not significantly change the ability of the T7A enzyme(s) to decompose the dyes. These results suggest that T7A may produce a Mn- or other peroxidase with similar substrate specificity to Mn-peroxidase. Affinity chromatography using immobilized azo dye isomers was used for purifying peroxidases from T7A. A significantly purified peroxidase preparation was obtained irrespective of the azo dye used. In comparison, concanavalin A lectin affinity chromatography showed very poor binding and resolution for T7A peroxidases. Azo dye affinity purification gave preparations sufficiently purified to allow amino acid microsequencing for two of the bound proteins. N-terminal amino acid sequences were found to share significant homology with a fungal Mn-peroxidase and actinomycete cellulases. Received: 20 May 1997 / Received revision: 17 December 1997 / Accepted: 2 January 1998  相似文献   

6.
The ability of a mixed natural microbial population, collected in an aerated lagoon treating Fluff pulp effluent and Streptomyces viridosporus strain T7A, to degrade lignosulphonate was evaluated. S. viridosporus growing in a mineral medium containing glycerol (7 g/l) and lignosulphonate (1 g/l) allowed 20% of lignosulphonate to be degraded after 18 days of incubation. A culture of the mixed population on culture medium after S. viridosporus growth was unable to degrade lignosulphonate products. Moreover, antagonism between S. viridosporus and the mixed population or between S. viridosporus and the isolated strains from this population was observed. The enhancement of lignosulphonate biodegradation by naturally occurring microorganisms in association with S. viridosporus (bioaugmentation strategy) seems to be difficult.  相似文献   

7.
Monochlorodimedone (MCD), commonly used as a halogen acceptor for haloperoxidase assays, was oxidized by hydrogen peroxide in the presence of lignin peroxidase isoenzymes H2 and H8. When oxidized, it produced a weak absorption band with an intensity that varied with pH. This absorbance was used as a simple method for the product analysis because it disappeared when MCD was brominated or chlorinated. We assessed the activity of the lignin peroxidases for oxidation of bromide by measuring the bromination of MCD, the formation of tribromide, the bromide-mediated oxidation of glutathione, and the bromide-mediated catalase-like activity. We analyzed the reaction products of MCD and the halide-mediated oxidation of glutathione when bromide was replaced by chloride. These enzymes demonstrated no significant activity for oxidation of chloride. Unlike other peroxidases, the lignin peroxidases exhibited similar pH-activity curves for the iodide and bromide oxidations. The optimum pH for activity was about 2.5. Surprisingly, this pH dependence of lignin peroxidase activity for the halides was nearly the same in the reactions with hydrogen donors, such as hydroquinone and guaiacol. The results suggested that protonation of the enzymes with pKa approximately 3.2 is necessary for the catalytic function of lignin peroxidases, irrespective of whether the substrates are electron or hydrogen donors. These unique reaction profiles of lignin peroxidases are compared to those of other peroxidases, such as lactoperoxidase, bromoperoxidase, chloroperoxidase, and horseradish peroxidase. Isozyme H2 was more active than isozyme H8, but isozyme H8 was more stable at very acidic pH.  相似文献   

8.
Summary Actinorhodin production inStreptomyces coelicolor A3(2) was relatively insensitive to the carbon source concentration but was elicited by nitrogen or phosphate depletion, or by a decline in the growth rate. In starch-glutamate media with nitrogen limitation, increasing the nitrogen supply delayed the onset of antibiotic synthesis and, at concentrations above 30 mM, decreased its rate. In a similar medium with phosphate limitation, increasing the initial phosphate concentration delayed actinorhodin formation and, above 2.5 mM, reduced the rate of synthesis. Experiments in which actinorhodin synthesis was elicited by phosphate depletion at various nitrogen concentrations demonstrated strong suppression by residual glutamate. Cultures in which actinorhodin biosynthesis was initiated by nitrogen depletion were not similarly suppressed by increasing amounts of residual phosphate. The results suggest that actinorhodin production inS. coelicolor A3(2) responds to interacting physiological controls, notable among which is nitrogen catabolite regulation.  相似文献   

9.
Biogranulation is a promising biotechnology developed for wastewater treatment. Biogranules exhibit a matrix microbial structure, and intensive research has shown that extracellular polymeric substances (EPS) are a major component of the biogranule matrix material in both anaerobic and aerobic granules. This paper aims to review the role of EPS in biogranulation, factors influencing EPS production, the effect of EPS on cell surface properties of biogranules, and the relationship of EPS to the structural stability of biogranules. EPS production is substantially enhanced when the microbial community is subject to stressful culture conditions, and the stimulated EPS production in the microbial matrix in turn favours the formation of anaerobic and aerobic granules. EPS can also play an essential role in maintaining the integrity and stability of spatial structure in mature biogranules. It is expected that this paper can provide deep insights into the functions of EPS in the biogranulation process.  相似文献   

10.

The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk’s medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m−2 s−1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk’s culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk’s medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m−2 s−1 with the earlier specified light–dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk’s medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.

  相似文献   

11.
The biodegradability of plant material derived from wheat grown under different concentrations of atmospheric CO2 was investigated using the lignocarbohydrate solubilising actinomycete, Streptomyces viridosporus. Growth of S. viridosporus and solubilisation of lignocarbohydrate were highest when wheat grown at ambient CO2 concentrations (350 ppm) was used as C-source. Growth of S. viridosporus and solubilisation were reduced when the plant material was derived from wheat grown at 645 ppm CO2. The results suggest that modifications in plant structure occur when wheat is grown under conditions of elevated atmospheric CO2 which make it more resistant to microbial digestion.  相似文献   

12.
13.
Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.  相似文献   

14.
15.
Saprolegnia diclina andS. parasitica isolated from three sources could germinate in strong acidic conditions. Growth ability correlated with the species of fungi rather than with the sources from which they were isolated.S.diclina isolates appeared to germinate at a pH condition as low as 3.5, whereasS. parasitica isolates could not germinate at below pH 3.8.S. parasitica isolates from visceral mycoses still showed good growth at 30°C, whereas other isolates did not. Also,S. parasitica isolates from visceral mycoses produced more abundant motile zoospores, and continued to do so for a longer period of time (28 d), thanS. parasitica isolates from external saprolegniasis andS. diclina isolates.  相似文献   

16.
17.
18.
The role that extracellular calcium plays in activating resting cloned cytotoxic T lymphocytes (CTL) to proliferate and to produce lymphokines was examined. In these cells, stimulation with interleukin 2 (IL-2) induced a proliferative response without a concomitant production of macrophage-activating factor (MAF), whereas stimulation with antigen or lectin (in the absence of IL-2) induced MAF production but not proliferation. In the case of IL-2-induced proliferation, extracellular calcium was required to initiate proliferation as well as to prevent cellular arrest later in the G2 + M phase of the cell cycle. In MAF production extracellular calcium was required both to activate the phosphatidylinositol signal-transducing mechanism and to mobilize intracellular calcium in antigen- or lectin-stimulated cytotoxic T lymphocytes. Further, extracellular calcium was required for only 8 of the 18 hr of stimulation time which was needed to achieve maximal MAF production, indicating that both calcium-dependent and -independent events exist in the signal pathway. Additional experiments with calcium ionophores and activators of protein kinase C indicated that although both intracellular calcium mobilization and de novo protein phosphorylation are involved in MAF production, an optimal increase in the level of intracellular calcium by itself is insufficient to induce the production of this lymphokine.  相似文献   

19.
20.
Aim: To evaluate the effect of temperature on growth parameters and on extracellular polymeric substance (EPS) production for Pseudoalteromonas antarctica NF3. Methods and Results: For this purpose, three growth parameters, lag time (λ), maximum growth rate (μ) and maximum population density (A), were calculated with the predictive Gompertz model. To evaluate the variations in μ with respect to temperature, the secondary Arrhenius and the square root models were used. Below the optimal growth temperature (17·5°C), the growth of P. antarctica was separated into two domains at the critical temperature of 12°C. Within the suboptimal domain (12–17·5°C), the temperature characteristic was the lowest (5·29 kcal mol?1). Growth population densities were maintained over the entire physiological portion assayed (5–17·5°C). Higher crude EPS production was found at temperatures included in the cold domain (5–12°C). Conclusions: All calculated parameters revealed an optimal adaptation of this strain to cold temperatures. Significance and Impact of the Study: The knowledge of the influence of temperature on growth parameters of P. antarctica NF3 and on EPS production could improve the production of this extracellular polymeric substance that is currently being used in the cosmetic and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号