首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No clear method of identifying species in the zoanthid genus Zoanthus has been established, due in part to the morphological plasticity of this genus (e.g., in polyp and colony form, oral disk color, tentacle number). Previous research utilizing the mitochondrial cytochrome oxidase I gene (COI) as a phylogenetic marker indicated that Zoanthus spp. in Japan may consist of only one or two species, despite a bewildering variety of observed morphotypes. Here we have utilized not only COI but also mitochondrial 16S ribosomal DNA (mt 16S rDNA) in order to clarify the extent of Zoanthus species diversity in southern Japan. Our molecular genetic results clearly show the presence of three monophyletic Zoanthus species groups with varying levels of morphological plasticity, including the new species Z. gigantus n. sp. and Z. kuroshio n. sp. We describe all three species found in this study, and identify potential morphological characters (coenenchyme and polyp structure as well as polyp external surface pigmentation patterns) useful in Zoanthus species identification. A morphological dichotomous key is provided to assist in field species identification.  相似文献   

2.
Interspecific hybridization has been proposed as a possible explanation for the incredible diversity seen in reef-dwelling corals, but until now little proof of such hybridization in other reef-dwelling anthozoans has been reported. Without further observation of hybridization, the question of such a phenomenon being widespread in Anthozoa remains. Here we have examined the mitochondrial cytochrome oxidase I gene (COI) and the nuclear internal transcribed spacer of ribosomal DNA (ITS-rDNA) from three species of the mass-spawning, encrusting anemone genus Zoanthus (Z. sansibaricus, Z. kuroshio, Z. gigantus) to investigate possible hybridization. The three species coexist at two of three sampling locations in southern Japan. Zoanthus spp. ITS-rDNA region spacers (ITS-1 and ITS-2) were shown to have very high rates of divergence. At locations where all three species co-existed, several of our sampled Z. sansibaricus individuals (with identical "sansi" COI sequences) possessed two very divergent (i.e., species-level difference) ITS-rDNA alleles, the expected "sansi" allele and the divergent "B" allele. Additionally, two Z. sansibaricus individuals possessed only "B" alleles despite having "sansi" COI sequences. These results indicate that Z. sansibaricus has possibly experienced interspecific hybridization at least once with a Zoanthus partner possessing the "B" allele, and that these resulting hybrids may also sexually reproduce, demonstrating potential hybridization occurring in the order Zoantharia (Hexacorallia).  相似文献   

3.
We have conducted the first phylogenetic study to our knowledge of Zoanthus in the northern hemisphere by sequencing and analysing the mitochondrial cytochrome oxidase subunit 1 (COI) gene. Various unidentified Zoanthus specimens and samples of what have been assumed to be four discrete species (Z. pacificus, Z. sansibaricus, Z. gnophodes, Z. erythrochloros) were collected from four field sites in Kagoshima Prefecture, Japan. Based on our obtained COI gene sequences, all but one of our collected Zoanthus samples appear to be conspecific, with nearly 100.00% base pair matching. Genetic results are further backed up by collected polyp diameter, tentacle count, and mesentary count data. These results indicate a need to reconsider and re-analyze current Zoanthus classification and identification. Possible reasons for the large morphological variation in the same genotype in Zoanthus are also discussed.  相似文献   

4.
In order to obtain data on the reproductive pattern of the clonal cnidarian Zoanthus sansibaricus, polyps were sampled by scuba gear at Taisho Lava Field, Sakurajima, for 24 months between April 2000 and March 2002 (polyps collected weekly for breeding season). According to cross-sections, Zoanthus polyps were divided into three sexual types; male, female and asexual, and were found in the same colony. At Sakurajima, Zoanthus sansibaricus spawned in the middle of July, releasing oocytes and sperm. These spawning events occur synchronously with moon phase. In gametogenesis of Zoanthus sansibaricus, oocytes became recognizable in February and grew rapidly from the end of June onward. Spermatocytes became recognizable in June and matured rapidly in the middle of July. After spawning events, oocytes still remaining in the endoderm were absorbed into Zoanthus tissue quickly.  相似文献   

5.
The recent, rapid radiation of Zosteropidae, coupled with their high levels of colonizing ability and phenotypic diversity, makes species delimitation within this family problematic. Given these problems, challenges to establish the mechanisms driving diversity and speciation within this group have arisen. Four morphologically distinct southern African Zosterops taxa, with a contentious taxonomic past, provide such a challenge. Here, supplemented with morphological and environmental analytical techniques, a combination of mitochondrial and nuclear markers were analyzed using Bayesian and Likelihood methods to determine their speciation patterns and to establish the phylogenetic relationships of these four morphologically diverse southern African Zosterops taxa. Nearly all individuals were phenotypically diagnosable, even those individuals collected in areas of contact between taxa. Localities where two or more taxa co-occur appear to possess intermediate environmental characteristics. Initial Bayesian and Likelihood mitochondrial DNA analyses and Bayesian structure analyses of the combined nuclear markers indicated levels of hybridization in areas of sympatry. A combined mtDNA and nuclear DNA analysis and a species tree analysis (with hybrids excluded) placed Z. pallidus as sister to the other southern African taxa, with Z. senegalensis the putative sister taxon to a clade comprising Z. capensis and Z. virens. The grouping of taxon-specific sampling localities and the apparent intermediate nature of birds from areas of sympatry points toward an influence of habitat type and the associated climatic conditions in driving Zosterops diversification in southern Africa.  相似文献   

6.
The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island, the genus was represented by five species, four of which are new to science, of which three are described here. All the species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.  相似文献   

7.
We investigated mitochondrial and nuclear DNA in the small tyrant-flycatcher genus Zimmerius (Tyrannidae) and show that molecular data are in strong disagreement with morphology-based taxonomy, but in good concordance with vocal characters. Our molecular data identified two independent cases of well-supported polyphyletic species arrangements within this genus that indicate the following taxonomic changes: elevation of Z. acer and Z. albigularis to species level, separation of northern populations of Z. chrysops as a species and inclusion of southern populations of Z. chrysops into Z. viridiflavus. Although polyphyly has rarely been encountered in bird systematics it has previously been shown for two other tyrannid genera and suggests that tyrannid taxonomy may be poorly resolved, presumably as a consequence of the conserved plumage patterns observed in many tyrannid genera. Our study suggests that vocalizations can be a better indicator of taxonomic limits than plumage pattern in tyrannids.  相似文献   

8.
Recently, the phylogenetic placement of the African slender snouted crocodile, Crocodylus cataphractus, has come under scrutiny and herein we address this issue using molecular and morphological techniques. Although it is often recognized as being a "basal" form, morphological studies have traditionally placed C. cataphractus within the genus Crocodylus, while molecular studies have suggested that C. cataphractus is very distinct from other Crocodylus. To address the relationship of this species to its congeners we have sequenced portions of two nuclear genes (C-mos 302bp and ODC 294bp), and two mitochondrial genes (ND6-tRNA(glu)-cytB 347bp and control region 457bp). Analyses of these molecular datasets, both as individual gene sequences and as concatenated sequences, support the hypothesis that C. cataphractus is not a member of Crocodylus or Osteolaemus. Examination of 165 morphological characters supports and strengthens our resurrection of an historic genus, Mecistops (Gray 1844) for cataphractus.  相似文献   

9.
Molecular genetic and morphological analysis of eelpouts of the genus Zoarces was carried out. Based on the mitochondrial DNA sequence variation, haplotypes of notched-fin eelpout, Z. elogatus, more closely related Fedorov eelpout, Z. fedorovi, and common eelpout, Z. viviparus, as well as of Andriyashev eelpout, Z. andriashevi, were grouped in one macrocluster. Haplotypes of American eelpout, Z. americanus, and blotched eelpout, Z. gillii, clustered separately from other species. The genetic differences between Z. gillii and the other eelpout species were very high for within-genus comparisons, constituting 7.62%. Species divergence in terms of morphological characters was generally consistent with molecular genetic data and confirmed distinct isolation of American eelpout, and especially of blotched eelpout.  相似文献   

10.
Although the genus Sycophila has broad host preferences, some species are specifically associated with figs as nonpollinator wasps. Because of their sexual dimorphism, morphological plasticity, cryptic mating behaviour and poorly known biology, species identifications are often uncertain. It is particularly difficult to match conspecific females and males. In this study, we employed two molecular markers, mitochondrial COI and nuclear ITS2, to identify Sycophila from six Chinese fig species. Morphological studies revealed 25 female and male morphs, while sequence results for both genes were consistent in supporting the presence of 15 species, of which 13 were host specialists and two used dual hosts. A single species of Sycophila was respectively found on four fig species, but six species were isolated from Ficus benjamina and a same number was reared from Ficus microcarpa. Sequence results revealed three male morphs in one species and detected two species that were overlooked by morphological analysis.  相似文献   

11.
Molecular approaches for identifying aquatic macroinvertebrate species are increasingly being used but there is ongoing debate about the number of DNA markers needed to differentiate species accurately. Here, we use two mitochondrial genes (cytochrome oxidase I, cytochrome b) and a nuclear gene (carbamoylphosphate synthetase) to differentiate species variation within the taxonomically challenging chironomid genus Procladius from southern Australia, a genus which is important for pollution monitoring. The mitochondrial genes indicated cryptic species that were subsequently linked to morphological variation at the larval and pupal stage. Two species previously described based on morphological criteria were linked to molecular markers, and there was evidence for additional cryptic species. Each genetic marker provided different information, highlighting the importance of considering multiple genes when dissecting taxonomically difficult groups, particularly those used in pollution monitoring.  相似文献   

12.
13.
The surfperch genus Embiotoca currently comprises two species, Embiotoca jacksoni , the black surfperch, and Embiotoca lateralis , the striped surfperch. Originally, however, Louis Agassiz described a third species in the genus Embiotoca , the rainbow surfperch, Embiotoca caryi . This latter name was changed by Louis' son, Alexander, to Hypsurus caryi , a name that remains valid. In this study, new molecular data (3545 bp of DNA from four mitochondrial and two nuclear DNA regions) indicated that the rainbow surfperch should be retained within the genus Embiotoca , a result consistent with recent morphological data. Adaptive radiation combined with sexual selection resulting in rapid morphological changes in the rainbow surfperch may have contributed to the conflicting position of this species.  相似文献   

14.
The genus Lythrypnus is a group of marine gobies that exhibit extreme gender flexibility as bidirectional sex changers. The genus consists of 20 described species and several undescribed species that are distributed in the Americas. Five species have been characterized with respect to sex allocation and gonad morphology. The hormonal, morphological, and behavioral aspects of sex change have been studied extensively for one species, L. dalli. These data, however, have not been interpreted in an evolutionary context because a phylogenetic hypothesis has not previously been proposed for the genus Lythrypnus. We propose the first phylogenetic hypothesis for the genus based on molecular data from three mitochondrial genes (12s, ND2, and Cytb), one nuclear gene (Rag1) and one nuclear intron (S7). We also include three previously undescribed Lythrypnus species. Our results support the monophyly of the genus with L. heterochroma, an Atlantic species, as the basal taxon. After the divergence of L. heterochroma, there are two main clades, one comprised of species distributed in the Atlantic, the other comprised of species distributed in the Pacific. These data indicate an Atlantic origin for the genus, followed by divergence after the closure of the Isthmus of Panama. Our data also support the monophyly of three previously described species complexes, the L. rhizophora complex and L. dalli complex in the Pacific, and the L. mowbrayi complex in the Atlantic. We mapped patterns of sex allocation within this genus onto the fully resolved and supported topology, and found that sexual plasticity and gender flexibility is likely a synapomorphy for the genus. Overall our results create a well-supported framework to understand the phylogeography of the genus, and to interpret the evolution of sex allocation in Lythrypnus gobies.  相似文献   

15.
The most extensively studied group of Darwin's finches is the genus Geospiza, the ground finches, and yet little is known about the evolutionary history and genetic relationships of these birds. Studies using either allozyme or morphological data have been unable to resolve relationships between the six species and numerous populations of ground finches. In this paper we report the results of a study using mitochondrial control region and nuclear internal transcribed spacer (ITS) 1 sequence data. The differentiation of the ground finch species based on morphological data is not reflected in either mitochondrial or nuclear DNA sequence phylogenies. Furthermore, there is little concordance between the mitochondrial haplotypes and ITS alleles found within individuals. We suggest that the absence of species-specific lineages can be attributed to ongoing hybridization involving all six species of Geospiza. There are no long term selective pressures against hybridization within this genus, and therefore a genetically homogenous genus may be maintained indefinitely. Hybridization has apparently played a role in the adaptive radiation of Darwin's finches.  相似文献   

16.
17.
The snapping shrimp genus Alpheus is among the most diverse of caridean shrimps, and analyses of taxa separated by the Isthmus of Panama have been used to estimate rates of molecular evolution. Although seven morphological groups have been informally suggested, no formal phylogenetic analysis of the genus has been previously attempted. Here we infer the phylogenetic relationships within Alpheus using sequence data from two nuclear genes, glucose-6-phosphate isomerase and elongation factor-1alpha, and from the mitochondrial gene cytochrome oxidase I. Three major clades corresponding to previously noted morphological features were identified. Discrepancies between earlier informal morphological groupings and molecular analyses largely consisted of species whose morphologies were not entirely typical of the group to which they had been assigned. The traditional placements of shrimp with highly sessile lifestyles and consequently simplified morphologies were also not supported by molecular analyses. Phylogenies for Alpheus suggest that specialized ecological requirements (e.g., symbiotic associations and estuarine habitats) and modified claw morphologies have evolved independently several times. These new analyses also support the sister species status of transisthmian pairs analyzed previously, although very similar pairs were not always resolved with the more slowly evolving nuclear loci. In addition, six new cryptic species were identified in the course of these studies plus a seventh whose status remains to be determined.  相似文献   

18.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

19.
The status of the genera Euparagonimus Chen, 1963 and Pagumogonimus Chen, 1963 relative to Paragonimus Braun, 1899 was investigated using DNA sequences from the mitochondrial cytochrome c oxidase subunit I (CO1) gene (partial) and the nuclear ribosomal DNA second internal transcribed spacer (ITS2). In the phylogenetic trees constructed, the genus Pagumogonimus is clearly not monophyletic and therefore not a natural taxon. Indeed, the type species of Pagumogonimus, P. skrjabini from China, is very closely related to Paragonimus miyazakii from Japan. The status of Euparagonimus is less obvious. Euparagonimus cenocopiosus lies distant from other lungflukes included in the analysis. It can be placed as sister to Paragonimus in some analyses and falls within the genus in others. A recently published morphological study placed E. cenocopiosus within the genus Paragonimus and probably this is where it should remain.  相似文献   

20.
Despite the fact that Bicyclus anynana has become an important model species for wing-pattern developmental biology and studies of phenotypic plasticity, little is known of the evolutionary history of the genus Bicyclus and the position of B. anynana. Understanding the evolution of development as well as the evolution of plasticity can be attempted in this species-rich genus that displays a large range of wing patterns with variable degrees of phenotypic responses to the environment. A context to guide extrapolations from population genetic studies within B. anynana to those between closely related species has been long overdue. A phylogeny of 54 of the 80 known Bicyclus species is presented based on the combined 3000-bp sequences of two mitochondrial genes, cytochrome oxidase I and II, and the nuclear gene, elongation factor 1alpha. A series of tree topologies, constructed either from the individual genes or from the combined data, using heuristic searches under a variety of weighting schemes were compared under the best maximum-likelihood models fitted for each gene separately. The most likely tree topology to have generated the three data sets was found to be a tree resulting from a combined MP analysis with equal weights. Most phylogenetic signal for the analysis comes from silent substitutions at the third position, and despite the faster rate of evolution and higher levels of homoplasy of the mitochondrial genes relative to the nuclear gene, the latter does not show substantially stronger support for basal clades. Finally, moving branches from the chosen tree topology to other positions on the tree so as to comply better with a previous morphological study did not significantly affect tree length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号