共查询到20条相似文献,搜索用时 0 毫秒
1.
Boland S Bonvallot V Fournier T Baeza-Squiban A Aubier M Marano F 《American journal of physiology. Lung cellular and molecular physiology》2000,278(1):L25-L32
We have previously shown that exposure to diesel exhaust particles (DEPs) stimulates human airway epithelial cells to secrete the inflammatory cytokines interleukin-8, interleukin-1beta, and granulocyte-macrophage colony-stimulating factor (GM-CSF) involved in allergic diseases. In the present paper, we studied the mechanisms underlying the increase in GM-CSF release elicited by DEPs using the human bronchial epithelial cell line 16HBE14o-. RT-PCR analysis has shown an increase in GM-CSF mRNA levels after DEP treatments. Comparison of the effects of DEPs, extracted DEPs, or extracts of DEPs has shown that the increase in GM-CSF release is mainly due to the adsorbed organic compounds and not to the metals present on the DEP surface because the metal chelator desferrioxamine had no inhibitory effect. Furthermore, radical scavengers inhibited the DEP-induced GM-CSF release, showing involvement of reactive oxygen species in this response. Moreover genistein, a tyrosine kinase inhibitor, abrogated the effects of DEPs on GM-CSF release, whereas protein kinase (PK) C, PKA, cyclooxygenase, or lipoxygenase inhibitors had no effect. PD-98059, an inhibitor of mitogen-activated protein kinase, diminished the effects of DEPs, whereas SB-203580, an inhibitor of p38 mitogen-activated protein kinase, had a lower effect, and DEPs did actually increase the active, phosphorylated form of the extracellular signal-regulated kinase as shown by Western blotting. In addition, cytochalasin D, which inhibits the phagocytosis of DEPs, reduced the increase in GM-CSF release after DEP treatment. Together, these data suggest that the increase in GM-CSF release is mainly due to the adsorbed organic compounds and that the effect of native DEPs requires endocytosis of the particles. Reactive oxygen species and tyrosine kinase(s) may be involved in the DEP-triggered signaling of the GM-CSF response. 相似文献
2.
3.
Diesel exhaust particles (DEP) have been proved to induce serious pulmonary injury, among which lethal pulmonary edema has been assumed to be mediated by vascular endothelial cell damage. In the present study, we investigated the cytotoxic mechanism of DEP on human pulmonary artery endothelial cells focusing on the role of active oxygen species. Endothelial cell viability was assessed by WST-8, a novel tetrazolium salt. Nitric oxide (NO) production was measured by using a new fluorescence indicator, diaminofluorescein-2 (DAF-2). Organic compounds in DEP were extracted by dichloromethane and methanol. DEP-extracts damaged endothelial cells under both subconfluent and confluent conditions. The DEP-extract-induced cytotoxicity was markedly reduced by treatment with SOD, catalase, N-(2-mercaptopropionyl)-glycine (MPG), or ebselen (a selenium-containing compound with glutathione peroxidase-like activity). Thus superoxide, hydrogen peroxide, and other oxygen-derived free radicals are likely to be implicated in DEP-extract-induced endothelial cell damage. Moreover, L-NAME and L-NMA, inhibitors of NO synthase, also attenuated DEP-extract-induced cytotoxicity, while sepiapterin, the precursor of tetrahydrobiopterin (BH(4), a NO synthase cofactor) interestingly enhanced DEP-extract-induced cell damage. These findings suggest that NO is also involved in DEP-extract-mediated cytotoxicity, which was confirmed by direct measurement of NO production. These active oxygen species, including peroxynitrite, may explain the mechanism of endothelial cell damage upon DEP exposure during the early stage. 相似文献
4.
Li-Hua Wu Peng Li Qing-Li Zhao Jin-Lan Piao Yu-Fei Jiao Makoto Kadowaki Takashi Kondo 《Apoptosis : an international journal on programmed cell death》2014,19(11):1654-1663
Ionizing radiation (IR) can generate reactive oxygen species (ROS). Excessive ROS have the potential to damage cellular macromolecules including DNA, proteins, and lipids and eventually lead to cell death. In this study, we evaluated the potential of arbutin, a drug chosen from a series of traditional herbal medicine by measuring intracellular hydroxyl radical scavenging ability in X-irradiated U937 cells. Arbutin (hydroquinone-β-D-glucopyranoside), a naturally occurring glucoside of hydroquinone, has been traditionally used to treat pigmentary disorders. However, there are no reports describing the effect of arbutin on IR-induced apoptosis. We confirmed that arbutin can protect cells from apoptosis induced by X-irradiation. The combination of arbutin and X-irradiation could reduce intracellular hydroxyl radical production and prevent mitochondrial membrane potential loss. It also could down-regulate the expression of phospho-JNK, phospho-p38 in whole cell lysate and activate Bax in mitochondria. Arbutin also inhibits cytochrome C release from mitochondria to cytosol. To verify the role of JNK in X-irradiation-induced apoptosis, the cells were pretreated with a JNK inhibitor, and found that JNK inhibitor could reduce apoptosis induced by X-irradiation. Taken together, our data indicate that arbutin plays an anti-apoptotic role via decreasing intracellular hydroxyl radical production, inhibition of Bax-mitochondria pathway and activation of the JNK/p38 MAPK pathway. 相似文献
5.
Diesel exhaust particles induce NF-kappa B activation in human bronchial epithelial cells in vitro: importance in cytokine transcription 总被引:7,自引:0,他引:7
Takizawa H Ohtoshi T Kawasaki S Kohyama T Desaki M Kasama T Kobayashi K Nakahara K Yamamoto K Matsushima K Kudoh S 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(8):4705-4711
6.
Amara N Bachoual R Desmard M Golda S Guichard C Lanone S Aubier M Ogier-Denis E Boczkowski J 《American journal of physiology. Lung cellular and molecular physiology》2007,293(1):L170-L181
Chronic exposure to particulate air pollution is associated with lung function impairment. To determine the molecular mechanism(s) of this phenomenon, we investigated, in an alveolar human epithelial cell line (A549), whether diesel exhaust particles (DEPs), a main component of particulate air pollution, modulates the expression and activity of the matrix metalloprotease (MMP)-1, a collagenase involved in alveolar wall degradation. Interaction of DEPs with cigarette smoke, which also produces structural and functional lung alterations, was also investigated. A noncytotoxic concentration of DEPs induced an increase in MMP-1 mRNA and protein expression and activity in A549 cells without modifying the expression of the MMP inhibitors TIMP-1 and -2. This effect was not potentiated when cells were coexposed to noncytotoxic concentrations of cigarette smoke condensate. DEP-induced MMP-1 was associated with increased ERK 1/2 phosphorylation and upregulation of expression and activity of the NADPH oxidase analog NOX4. Cell transfection with a NOX4 small interfering RNA prevented these phenomena, showing the critical role of a NOX4 ERK 1/2 pathway in DEP-induced MMP-1 expression and activity. Similar results to those observed in A549 cells were obtained in another human lung epithelial cell line, NCI-H292. Furthermore, experiments in mice intratracheally instilled with DEPs confirmed the in vitro findings, showing the induction of NOX4 and MMP-1 protein expression in alveolar epithelial cells. We conclude that alveolar alterations secondary to MMP-1 induction could explain lung function impairment associated with exposure to particulate pollution. 相似文献
7.
Cao Z Hallur S Qiu HZ Peng X Li Y 《Biochemical and biophysical research communications》2004,316(4):1043-1049
Substantial evidence suggests that peroxynitrite generated from the bi-radical reaction of nitric oxide and superoxide is critically involved in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Reaction with sulfhydryl (SH)-containing molecules has been proposed to be a major detoxification pathway of peroxynitrite in biological systems. This study was undertaken to determine if chemically elevated intracellular reduced glutathione (GSH), a major SH-containing biomolecule, affords protection against peroxynitrite-mediated toxicity in cultured neuronal cells. Incubation of human neuroblastoma SH-SY5Y cells with the unique chemoprotectant, 3H-1,2-dithiole-3-thione (D3T), led to a significant elevation of cellular GSH in a concentration-dependent fashion. To examine the protective effects of D3T-induced GSH on peroxynitrite-mediated toxicity, SH-SY5Y cells were pretreated with D3T and then exposed to either the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), or the authentic peroxynitrite. We observed that D3T-pretreated cells showed a markedly increased resistance to SIN-1- or authentic peroxynitrite-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. Conversely, depletion of cellular GSH by buthionine sulfoximine (BSO) caused a marked potentiation of SIN-1- or authentic peroxynitrite-mediated cytotoxicity. To further demonstrate the causal role for GSH induction in D3T-mediated cytoprotection, SH-SY5Y cells were co-treated with BSO to abolish D3T-induced GSH elevation. Co-treatment of the cells with BSO was found to significantly reverse the protective effects of D3T on SIN-1- or authentic peroxynitrite-elicited cytotoxicity. Taken together, this study demonstrates for the first time that D3T can induce GSH in cultured SH-SY5Y cells, and that the D3T-augmented cellular GSH defense affords a marked protection against peroxynitrite-induced toxicity in cultured human neuronal cells. 相似文献
8.
Go YM Ziegler TR Johnson JM Gu L Hansen JM Jones DP 《Free radical biology & medicine》2007,42(3):363-370
Little is known about the relative sensitivities of antioxidant systems in nuclei, mitochondria, and cytoplasm. The present study examined the oxidation of the thiol-dependent antioxidant systems in these subcellular compartments under conditions of limited energy supply of human colonic epithelial HT-29 cells induced by depletion of glucose (Glc) and glutamine (Gln) from the culture medium. Increased oxidation of dichlorofluoroscein (DCF) indicated an increased level of reactive oxygen species (ROS). Redox Western blot analysis showed oxidation of cytosolic thioredoxin-1 (Trx1) and mitochondrial thioredoxin-2 (Trx2) by 24 h, but little oxidation of nuclear Trx1. The Trx1 substrate, redox factor-1 (Ref-1), was also oxidized in cytosol but was reduced in nuclei. Protein S-glutathionylation (PrSSG), expressed as a ratio of protein thiol (PrSH), was also increased in the cytosol, while nuclear PrSSG/PrSH was not. Taken together, the data show that oxidative stress induced by depletion of Glc and Gln affects the redox states of proteins in the cytoplasm and mitochondria more than those in the nucleus. These results indicate that the nuclear compartment has better protection against oxidative stress than cytoplasm or mitochondria. These results further suggest that energy and/or substrate supply may contribute to sensitivity of mitochondrial and cytoplasmic systems to oxidative damage. 相似文献
9.
Rat small intestinal epithelial cells and human colon adenocarcinoma cells cultured on Matrigel expressed the differentiation specific enzyme, sucrase-isomaltase, as determined by indirect immunofluorescence. Rat small intestinal epithelial cells, rat colonocytes, and human colon adenocarcinoma cells developed an altered morphology when cultured on Matrigel and became apoptotic within 24-48 h. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin caused a 2- and 5-fold induction, respectively, of ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene- or 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on plastic was not detected. 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment caused a 14-fold induction of transfected, rat CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment induced ethoxyresorufin-o-deethylase activity by 6- and 1.6-fold, respectively in rat colonocytes cultured on Matrigel. Induction of ethoxyresorufin-o-deethylase activity was not observed in rat colonocytes cultured on plastic. CYP1A1-promoter-luciferase activity was induced 3-fold by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat colonocytes cultured on Matrigel. Induction of CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells or rat colonocytes cultured on plastic was not observed. Ethoxyresorufin-o-deethylase activity in human colon adenocarcinoma cells, cultured on either plastic or Matrigel, was induced 7-fold by benzo[a]pyrene. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity was 2-fold greater in human colon adenocarcinoma cells cultured on Matrigel compared to cells cultured on plastic. Extracellular matrix-mediated differentiation and apoptosis of intestinal cells provide in vitro systems for study of the regulation of CYP1A1 expression, carcinogen activation in the gut and mechanism(s) of apoptosis of colon cancer cells. 相似文献
10.
Liang Zhang Ji Li ZhenZhou Jiang LiXin Sun Xue Mei Bian Yong LuYong Zhang 《Biochemical and biophysical research communications》2011,(1):68
The aim of this study was to investigate the protective effect of inhibition of aquaporin-1 (AQP1) expression against aristolochic acid I (AA-I)-induced apoptosis. HK-2 cells impaired by AA-I were used in this study as the cell model of aristolochic acid nephropathy. Apoptosis was studied by different methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays, flow cytometry, and caspase 3 activity assays. We compared AA-I-mediated apoptosis in HK-2 cells with or without knockdown of AQP1 expression by RNA interference. MTT assays showed that AA-I inhibited the viability of HK-2 cells in a time- and concentration-dependent manner. Apoptosis was evidenced by the results of the Annexin V/propidium iodide assay and the occurrence of a sub-G1 peak in cell-cycle analysis. The activity of caspase 3 was found to have been increased by AA-I in a concentration-dependent manner. However, AQP1 RNA interference provided protection against injury in cells treated with AA-I (40 μM) for 24 h and attenuated the number of apoptotic cells. These results suggested that AQP1 plays an important role in AA-I-induced apoptosis and that inhibition of AQP1 expression may protect HK-2 cells from AA-I-induced apoptotic damage. 相似文献
11.
Recently, under large-scale screening experiments, we found that sphondin, a furanocoumarin derivative isolated from Heracleum laciniatum, possessed an inhibitory effect on IL-1beta-induced increase in the level of COX-2 protein and PGE(2) release in A549 cells. Accordingly, we examined in the present study the action mechanism of sphondin on the inhibition of IL-1beta-induced COX-2 protein expression and PGE(2) release in a human pulmonary epithelial cell line (A549). Pretreatment of cells with sphondin (10-50 microM) concentration-dependently attenuated IL-1beta-induced COX-2 protein expression and PGE(2) release. The IL-1beta-induced increase in COX-2 mRNA expression was also attenuated by sphondin (50 microM). The selective COX-2 inhibitor, NS-398 (0.01-1 microM), inhibited the activity of the COX-2 enzyme in a concentration-dependent manner, while sphondin (10-50 microM) had no effect. Sphondin (50 microM) did not affect the IL-1beta-induced activations of p44/42 MAPK, p38 MAPK, and JNK. Treatment of cells with sphondin (50 microM) or the NF-kappaB inhibitor, PDTC (50 microM) partially inhibited IL-1beta-induced degradation of IkappaB-alpha in the cytosol and translocation of p65 NF-kappaB from the cytosol to the nucleus. Furthermore, IL-1beta-induced NF-kappaB-specific DNA-protein complex formation in the nucleus was partially inhibited by sphondin (50 microM) or PDTC (50 microM). Taken together, we demonstrate that sphondin inhibits IL-1beta-induced PGE(2) release in A549 cells; this inhibition is mediated by suppressing of COX-2 expression, rather than by inhibiting COX-2 enzyme activity. The inhibitory mechanism of sphondin on IL-1beta-induced COX-2 expression may be, at least in part, through suppression of NF-kappaB activity. We conclude that sphondin may have the therapeutic potential as an anti-inflammatory drug on airway inflammation. 相似文献
12.
Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells 总被引:2,自引:0,他引:2
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease. 相似文献
13.
14.
Verheggen MM Bont HI Adriaansen-Soeting PW Goense BJ Tak CJ Hoogsteden HC Hal PT Versnel MA 《Mediators of inflammation》1996,5(3):210-217
In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, both in vivo and in vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1beta, TNF-alpha or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE(2) and 6-keto-PGF(1alpha) production was significantly increased. This IL-1beta- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction. 相似文献
15.
Qu W Cheng L Dill AL Saavedra JE Hong SY Keefer LK Waalkes MP 《Chemico-biological interactions》2011,(1):88-96
Arsenic is a cancer chemotherapeutic but hepatotoxicity can be a limiting side effect. O2-vinyl 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (V-PROLI/NO) is a nitric oxide (NO) donor prodrug and metabolized by liver cytochromes P450 (CYP450) to release NO. The effects of V-PROLI/NO pretreatment on the toxicity of arsenic (as NaAsO2) were studied in a rat liver cell line (TRL 1215). The cells acted upon the prodrug to release NO, as assessed by nitrite levels, in a time-dependent fashion to maximal levels of 8-fold above basal levels. Pretreatment with V-PROLI/NO markedly reduced arsenic cytolethality which was directly related to the level of NO produced by V-PROLI/NO treatment. Cyp1a1 expression was directly related to the level of NO production and to reduced arsenic cytotoxicity. V-PROLI/NO pretreatment markedly reduced arsenic-induced apoptosis and suppressed phosphorylation of JNK1/2. V-PROLI/NO pretreatment facilitated additional increases in arsenic-induced metallothionein, a metal-binding protein important in arsenic tolerance. Thus, V-PROLI/NO protects against arsenic toxicity in rat liver cells, reducing cytolethality, apoptosis and dysregulation of MAPKs, through generation of NO formed after metabolism by liver cell enzymes, possibly including Cyp1a1. CYP450 required for NO production from V-PROLI/NO treatment in the rat and human appears to differ as we have previously studied the ability of V-PROLI/NO to prevent arsenic toxicity in human liver cells where it reduced toxicity apparently through a CYP2E1-mediated metabolic mechanism. None-the-less, it appears that both rat and human liver cells act upon V-PROLI/NO via a CYP450-related mechanism to produce NO and subsequently reduce arsenic toxicity. 相似文献
16.
Samuel W Kutty RK Nagineni S Vijayasarathy C Chandraratna RA Wiggert B 《Journal of cellular physiology》2006,209(3):854-865
17.
S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. 总被引:4,自引:0,他引:4
Yasushi Shikata Konstantin G Birukov Joe G N Garcia 《Journal of applied physiology》2003,94(3):1193-1203
Sphingosine 1-phosphate (S1P) enhances human pulmonary endothelial monolayer integrity via Rac GTPase-dependent formation of a cortical actin ring (Garcia et al. J Clin Invest 108: 689-701, 2001). The mechanisms underlying this response are not well understood but may involve rapid redistribution of focal adhesions (FA) as attachment sites for actin filaments. We evaluate the effects of S1P on the redistribution of paxillin, FA kinase (FAK), and the G protein-coupled receptor kinase-interacting proteins (GITs). S1P induced Rac GTPase activation and cortical actin ring formation at physiological concentrations (0.5 microM), whereas 5 microM S1P caused prominent stress fiber formation and activation of Rho and Rac GTPases. S1P (0.5 microM) stimulated the tyrosine phosphorylation of FAK Y(576), and paxillin was linked to FA disruption and redistribution to the cell periphery. Furthermore, S1P induced a transient association of GIT1 with paxillin and redistribution of the GIT2-paxillin complex to the cell cortical area without affecting GIT2-paxillin association. These results suggest a role of FA rearrangement in S1P-mediated barrier enhancement via Rac- and GIT-mediated processes. 相似文献
18.
A Cerwenka T M Morgan R W Dutton 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(10):5535-5543
The goal of adoptive immunotherapy is to target a high number of persisting effector cells to the site of a virus infection or tumor. In this study, we compared the protective value of hemagglutinin peptide-specific CD8 T cells generated from the clone-4 TCR-transgenic mice, defined by different stages of their differentiation, against lethal pulmonary influenza infection. We show that the adoptive transfer of high numbers of Ag-specific unprimed, naive CD8 T cells failed to clear the pulmonary virus titer and to promote host survival. The same numbers of in vitro generated primary Ag-specific Tc1 effector cells, producing high amounts of IFN-gamma, or resting Tc1 memory cells, generated from these effectors, were protective. Highly activated CD62Llow Tc1 effectors accumulated in the lung with rapid kinetics and most efficiently reduced the pulmonary viral titer early during infection. The resting CD62Lhigh naive and memory populations first increased in cell numbers in the draining lymph nodes. Subsequently, memory cells accumulated more rapidly and to a greater extent in the lung lavage as compared with naive cells. Thus, effector cells are most effective against a localized virus infection, which correlates with their ability to rapidly distribute at the infected tissue site. The finding that similar numbers of naive Ag-specific CD8 T cells are not protective supports the view that qualitative differences between the two resting populations, the naive and the memory population, may play a major role in their protective value against disease. 相似文献
19.
Berggren MI Husbeck B Samulitis B Baker AF Gallegos A Powis G 《Archives of biochemistry and biophysics》2001,392(1):103-109
Thioredoxin-1 (Trx-1) is a small redox oncoprotein whose expression is increased in a number of human primary cancers where it is associated with aggressive tumor growth, inhibition of apoptosis and decreased patient survival. We report that Trx-1-transfected MCF-7 human breast cancer cells have increased expression of thioredoxin peroxidase-1 (TrxP-1) a peroxiredoxin family member that scavenges H(2)O(2) using Trx-1 as a source of reducing equivalents. Our work shows that TrxP-1 is more effective than selenium-dependent glutathione peroxidase in protecting cells against H(2)O(2) damage. Transfection of mouse WEHI7.2 lymphoma cells with human TrxP-1 or TrxP-2, but not TrxP-4, protects the cells against H(2)O(2) induced apoptosis but does not protect against apoptosis induced by dexamethasone, etoposide, or doxorubicin. The results show that an increase in TrxP-1 expression contributes to the protection against H(2)O(2) induced apoptosis caused by Trx-1, but does not protect against apoptosis induced by other agents. 相似文献
20.
Chuanfu Zhang Yutao Yang Xiaowei Zhou Zhixin Yang Xuelin Liu Zhiliang Cao Hongbin Song Yuxian He Peitang Huang 《Virology journal》2011,8(1):181