首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioenergetics of light-harvesting by photosynthetic antenna proteins in higher plants is well understood. However, investigation into the regulatory non-photochemical quenching (NPQ) mechanism, which dissipates excess energy in high light, has led to several conflicting models. It is generally accepted that the major photosystem II antenna protein, LHCII, is the site of NPQ, although the minor antenna complexes (CP24/26/29) are also proposed as alternative/additional NPQ sites. LHCII crystals were shown to exhibit the short excitation lifetime and several spectral signatures of the quenched state. Subsequent structure-based models showed that this quenching could be explained by slow energy trapping by the carotenoids, in line with one of the proposed models. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we show that the crystal structure of CP29 corresponds to a strongly quenched conformation. Using a structure-based theoretical model we show that this quenching may be explained by the same slow, carotenoid-mediated quenching mechanism present in LHCII crystals.  相似文献   

2.
When LHCII forms aggregates, the internal conformational changes will result in chlorophyll fluorescence quenching. Uncovering the molecular mechanism of this phenomenon will help us to understand how plants dissipate the excess excitation energy through non-photochemical quenching (NPQ) process. The crystal structure of spinach and pea LHCII have been published, and recently, we solved another crystal structure of LHCII from cucumber at 2.66A resolution. Here we present the first direct structural evidence indicating that the two lutein(Lut) molecules bound in each LHCII monomer have different conformations, Lut621 has a more twisted conformation than that of Lut620. The intimate interaction between the Lut620 and Chla612/Chla611 dimer leads to form a hetero-trimer, which is considered to be a potential quenching site. We also discovered that the dehydration of the LHCII crystals resulted in a notable shrinkage of the crystal unit cell dimensions which was accompanied by a red-shift of the fluorescence emission spectra of the crystals. These phenomena suggest the changes in the crystal packing during dehydration might be the cause of internal conformational changes within LHCII. We proposed a conformational change related NPQ model based on the structure analysis.  相似文献   

3.
Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar light conditions, harmful excitation energy is safely dissipated as heat. To prevent self-aggregation and probe the conformations of LHCs in a lipid environment devoid from detergent interactions, we assembled LHCII trimer complexes into lipid nanodiscs consisting of a bilayer lipid matrix surrounded by a membrane scaffold protein (MSP). The LHCII nanodiscs were characterized by fluorescence spectroscopy and found to be in an unquenched, fluorescent state. Remarkably, the absorbance spectra of LHCII in lipid nanodiscs show fine structure in the carotenoid and Qy region that is different from unquenched, detergent-solubilized LHCII but similar to that of self-aggregated, quenched LHCII in low-detergent buffer without magnesium ions. The nanodisc data presented here suggest that 1), LHCII pigment-protein complexes undergo conformational changes upon assembly in nanodiscs that are not correlated with downregulation of its light-harvesting function; and 2), these effects can be separated from quenching and aggregation-related phenomena. This will expand our present view of the conformational flexibility of LHCII in different microenvironments.  相似文献   

4.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

5.
Light-harvesting complex II (LHCII, the major plant light-harvesting pigment-protein complex, efficiently harvests light-energy. However, if the incident light intensity is too high and photosynthesis becomes saturated, LHCII can switch into a quenching state that prevents photodamage. This important process is called non-photochemical quenching, or NPQ, and represents feedback control. Andrew Pascal et al. have recently proposed a detailed model of NPQ based upon the crystal structure of LHCII from spinach.  相似文献   

6.
Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).  相似文献   

7.
The maximum chlorophyll fluorescence lifetime in isolated photosystem II (PSII) light-harvesting complex (LHCII) antenna is 4 ns; however, it is quenched to 2 ns in intact thylakoid membranes when PSII reaction centers (RCIIs) are closed (Fm). It has been proposed that the closed state of RCIIs is responsible for the quenching. We investigated this proposal using a new, to our knowledge, model system in which the concentration of RCIIs was highly reduced within the thylakoid membrane. The system was developed in Arabidopsis thaliana plants under long-term treatment with lincomycin, a chloroplast protein synthesis inhibitor. The treatment led to 1), a decreased concentration of RCIIs to 10% of the control level and, interestingly, an increased antenna component; 2), an average reduction in the yield of photochemistry to 0.2; and 3), an increased nonphotochemical chlorophyll fluorescence quenching (NPQ). Despite these changes, the average fluorescence lifetimes measured in Fm and Fm' (with NPQ) states were nearly identical to those obtained from the control. A 77 K fluorescence spectrum analysis of treated PSII membranes showed the typical features of preaggregation of LHCII, indicating that the state of LHCII antenna in the dark-adapted photosynthetic membrane is sufficient to determine the 2 ns Fm lifetime. Therefore, we conclude that the closed RCs do not cause quenching of excitation in the PSII antenna, and play no role in the formation of NPQ.  相似文献   

8.
Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25–150?nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25?ns) compared to free LHCII in solution (2.2–3.9?ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6–0.9?ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.  相似文献   

9.
Here we show how the protein environment in terms of detergent concentration/protein aggregation state, affects the sensitivity to pH of isolated, native LHCII, in terms of chlorophyll fluorescence quenching. Three detergent concentrations (200, 20 and 6 μM n-dodecyl β-d-maltoside) have been tested. It was found that at the detergent concentration of 6 μM, low pH quenching of LHCII is close to the physiological response to lumen acidification possessing pK of 5.5. The analysis has been conducted both using arbitrary PAM fluorimetry measurements and chlorophyll fluorescence lifetime component analysis. The second led to the conclusion that the 3.5 ns component lifetime corresponds to an unnatural state of LHCII, induced by the detergent used for solubilising the protein, whilst the 2 ns component is rather the most representative lifetime component of the conformational state of LHCII in the natural thylakoid membrane environment when the non-photochemical quenching (NPQ) was absent. The 2 ns component is related to a pre-aggregated LHCII that makes it more sensitive to pH than the trimeric LHCII with the dominating 3.5 ns lifetime component. The pre-aggregated LHCII displayed both a faster response to protons and a shift in the pK for quenching to higher values, from 4.2 to 4.9. We concluded that environmental factors like lipids, zeaxanthin and PsbS protein that modulate NPQ in vivo could control the state of LHCII aggregation in the dark that makes it more or less sensitive to the lumen acidification. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

10.
《BBA》2020,1861(5-6):148115
Green plants protect against photodamage by dissipating excess energy in a process called non-photochemical quenching (NPQ). In vivo, NPQ is activated by a drop in the luminal pH of the thylakoid membrane that triggers conformational changes of the antenna complexes, which activate quenching channels. The drop in pH also triggers de-epoxidation of violaxanthin, one of the carotenoids bound within the antenna complexes, into zeaxanthin, and so the amplitude of NPQ in vivo has been shown to increase in the presence of zeaxanthin. In vitro studies on light-harvesting complex II (LHCII), the major antenna complex in plants, compared different solubilization environments, which give rise to different levels of quenching and so partially mimic NPQ in vivo. However, in these studies both completely zeaxanthin-independent and zeaxanthin-dependent quenching have been reported, potentially due to the multiplicity of solubilization environments. Here, we characterize the zeaxanthin dependence of the photophysics in LHCII in a near-physiological membrane environment, which produces slightly enhanced quenching relative to detergent solubilization, the typical in vitro environment. The photophysical pathways of dark-adapted and in vitro de-epoxidized LHCIIs are compared, representative of the low-light and high-light conditions in vivo, respectively. The amplitude of quenching as well as the dissipative photophysics are unaffected by zeaxanthin at the level of individual LHCIIs, suggesting that zeaxanthin-dependent quenching is independent of the channels induced by the membrane. Furthermore, our results demonstrate that additional factors beyond zeaxanthin incorporation in LHCII are required for full development of NPQ.  相似文献   

11.
In biochemistry and cell biology, understanding the molecular mechanisms by which physiological processes are regulated is regarded as an ultimate goal. In higher plants, one of the most widely investigated regulatory processes occurs in the light harvesting complexes (LHCII) of the chloroplast thylakoid membranes. Under limiting photon flux densities, LHCII harvests sunlight with high efficiency. When the intensity of incident radiation reaches levels close to the saturation of the photosynthesis, the efficiency of light harvesting is decreased by a process referred to as nonphotochemical quenching (NPQ), which enhances the singlet-excited state deactivation via nonradiative dissipative processes. Conformational rearrangements in LHCII are known to be crucial in promoting and controlling NPQ in vitro and in vivo. In this article, we address the thermodynamic nature of the conformational rearrangements promoting and controlling NPQ in isolated LHCII. A combined, linear reaction scheme in which the folded, quenched state represents a stable intermediate on the unfolding pathway was employed to describe the temperature dependence of the spectroscopic signatures associated with the chlorophyll fluorescence quenching and the loss of secondary structure motifs in LHCII. The thermodynamic model requires considering the temperature dependence of Gibbs free energy difference between the quenched and the unquenched states, as well as the unfolded and quenched states, of LHCII. Even though the same reaction scheme is adequate to describe the quenching and the unfolding processes in LHCII monomers and trimers, their thermodynamic characteristics were found to be markedly different. The results of the thermodynamic analysis shed light on the physiological importance of the trimeric state of LHCII in stabilizing the efficient light harvesting mode as well as preventing the quenched conformation of the protein from unfolding. Moreover, the transition to the quenched conformation in trimers reveals a larger degree of cooperativity than in monomers, explained by a small characteristic entropy (ΔHq = 85 ± 3 kJ mol−1 compared to 125 ± 5 kJ mol−1 in monomers), which enables the fine-tuning of nonphotochemical quenching in vivo.  相似文献   

12.
Non-photochemical quenching (NPQ) protects plants against photodamage by converting excess excitation energy into harmless heat. In vitro aggregation of the major light-harvesting complex (LHCII) induces similar quenching, the molecular mechanism of which is frequently considered to be the same. However, a very basic question regarding the aggregation-induced quenching has not been answered yet. Are excitation traps created upon aggregation, or do existing traps start quenching excitations more efficiently in aggregated LHCII where trimers are energetically coupled? Time-resolved fluorescence experiments presented here demonstrate that aggregation creates traps in a significant number of LHCII trimers, which subsequently also quench excitations in connected LHCIIs.  相似文献   

13.
The photoprotective molecular switch in the photosystem II antenna   总被引:3,自引:0,他引:3  
We have reviewed the current state of multidisciplinary knowledge of the photoprotective mechanism in the photosystem II antenna underlying non-photochemical chlorophyll fluorescence quenching (NPQ). The physiological need for photoprotection of photosystem II and the concept of feed-back control of excess light energy are described. The outline of the major component of nonphotochemical quenching, qE, is suggested to comprise four key elements: trigger (ΔpH), site (antenna), mechanics (antenna dynamics) and quencher(s). The current understanding of the identity and role of these qE components is presented. Existing opinions on the involvement of protons, different LHCII antenna complexes, the PsbS protein and different xanthophylls are reviewed. The evidence for LHCII aggregation and macrostructural reorganization of photosystem II and their role in qE are also discussed. The models describing the qE locus in LHCII complexes, the pigments involved and the evidence for structural dynamics within single monomeric antenna complexes are reviewed. We suggest how PsbS and xanthophylls may exert control over qE by controlling the affinity of LHCII complexes for protons with reference to the concepts of hydrophobicity, allostery and hysteresis. Finally, the physics of the proposed chlorophyll-chlorophyll and chlorophyll-xanthophyll mechanisms of energy quenching is explained and discussed. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

14.
The minor light-harvesting complexes CP24, CP26, and CP29 have been proposed to play a key role in the zeaxanthin (Zx)-dependent high light-induced regulation (NPQ) of excitation energy in higher plants. To characterize the detailed roles of these minor complexes in NPQ and to determine their specific quenching effects we have studied the ultrafast fluorescence kinetics in knockout (ko) mutants koCP26, koCP29, and the double mutant koCP24/CP26. The data provide detailed insight into the quenching processes and the reorganization of the Photosystem (PS) II supercomplex under quenching conditions. All genotypes showed two NPQ quenching sites. Quenching site Q1 is formed by a light-induced functional detachment of parts of the PSII supercomplex and a pronounced quenching of the detached antenna parts. The antenna remaining bound to the PSII core was also quenched substantially in all genotypes under NPQ conditions (quenching site Q2) as compared with the dark-adapted state. The latter quenching was about equally strong in koCP26 and the koCP24/CP26 mutants as in the WT. Q2 quenching was substantially reduced, however, in koCP29 mutants suggesting a key role for CP29 in the total NPQ. The observed quenching effects in the knockout mutants are complicated by the fact that other minor antenna complexes do compensate in part for the lack of the CP24 and/or CP29 complexes. Their lack also causes some LHCII dissociation already in the dark.  相似文献   

15.
Plants need a highly responsive regulatory system to keep photosynthetic light reactions in balance with the needs and restrictions of the downstream metabolism. This mechanism optimises plant growth under naturally fluctuating light conditions. In this opinion article, we present a model addressing the biological role of the light intensity-controlled phosphorylation of light-harvesting complex II (LHCII) proteins and its relation with the non-photochemical quenching of excitation energy (NPQ). We overturn a long held view of the possible role of 'state transitions'. Instead, we discuss the interplay between LHCII protein phosphorylation and NPQ, a mechanism that is crucial for regulating excitation energy distribution to the two photosystems (PSII and PSI) and balancing the intersystem electron flow despite constant fluctuations in light intensity.  相似文献   

16.
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.  相似文献   

17.
Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants, which dissipates excess energy and further protects the photosynthetic apparatus under high light stress. NPQ can be dissected into a number of components: qE, qZ, and qI. In general, NPQ is catalyzed by two independent mechanisms, with the faster-activated quenching catalyzed by the monomeric light-harvesting complex (LHCII) proteins and the slowly activated quenching catalyzed by LHCII trimers, both processes depending on zeaxanthin but to different extent. Here, we studied the NPQ of the intertidal green macroalga, Ulva prolifera, and found that the NPQ of U. prolifera lack the faster-activated quenching, and showed much greater sensitivity to dithiothreitol (DTT) than to dicyclohexylcarbodiimide (DCCD). Further results suggested that the monomeric LHC proteins in U. prolifera included only CP29 and CP26, but lacked CP24, unlike Arabidopsis thaliana and the moss Physcomitrella patens. Moreover, the expression levels of CP26 increased significantly following exposure to high light, but the concentrations of the two important photoprotective proteins (PsbS and light-harvesting complex stress-related [LhcSR]) did not change upon the same conditions. Analysis of the xanthophyll cycle pigments showed that, upon exposure to high light, zeaxanthin synthesis in U. prolifera was gradual and much slower than that in P. patens, and could effectively be inhibited by DTT. Based on these results, we speculate the enhancement of CP26 and slow zeaxanthin accumulation provide an atypical NPQ, making this green macroalga well adapted to the intertidal environments.  相似文献   

18.
The PsbS subunit of photosystem II (PSII) plays a key role in nonphotochemical quenching (NPQ), the major photoprotective regulatory mechanism in higher plant thylakoid membranes, but its mechanism of action is unknown. Here we describe direct evidence that PsbS controls the organization of PSII and its light harvesting system (LHCII). The changes in chlorophyll fluorescence amplitude associated with the Mg(2+)-dependent restacking of thylakoid membranes were measured in thylakoids prepared from wild-type plants, a PsbS-deficient mutant and a PsbS overexpresser. The Mg(2+) requirement and sigmoidicity of the titration curves for the fluorescence rise were negatively correlated with the level of PsbS. Using a range of PsbS mutants, this effect of PsbS was shown not to depend upon its efficacy in controlling NPQ, but to be related only to protein concentration. Electron microscopy and fluorescence spectroscopy showed that this effect was because of enhancement of the Mg(2+)-dependent re-association of PSII and LHCII by PsbS, rather than an effect on stacking per se. In the presence of PsbS the LHCII.PSII complex was also more readily removed from thylakoid membranes by detergent, and the level of PsbS protein correlated with the amplitude of the psi-type CD signal originating from features of LHCII.PSII organization. It is proposed that PsbS regulates the interaction between LHCII and PSII in the grana membranes, explaining how it acts as a pH-dependent trigger of the conformational changes within the PSII light harvesting system that result in NPQ.  相似文献   

19.
To prevent photo-oxidative damage to the photosynthetic membrane in strong light, plants dissipate excess absorbed light energy as heat in a mechanism known as non-photochemical quenching (NPQ). NPQ is triggered by the trans-membrane proton gradient (ΔpH), which causes the protonation of the photosystem II light-harvesting antenna (LHCII) and the PsbS protein, as well as the de-epoxidation of the xanthophyll violaxanthin to zeaxanthin. The combination of these factors brings about formation of dissipative pigment interactions that quench the excess energy. The formation of NPQ is associated with certain absorption changes that have been suggested to reflect a conformational change in LHCII brought about by its protonation. The light-minus-dark recovery absorption difference spectrum is characterized by a series of positive and negative bands, the best known of which is ΔA(535). Light-minus-dark recovery resonance Raman difference spectra performed at the wavelength of the absorption change of interest allows identification of the pigment responsible from its unique vibrational signature. Using this technique, the origin of ΔA(535) was previously shown to be a subpopulation of red-shifted zeaxanthin molecules. In the absence of zeaxanthin (and antheraxanthin), a proportion of NPQ remains, and the ΔA(535) change is blue-shifted to 525 nm (ΔA(525)). Using resonance Raman spectroscopy, it is shown that the ΔA(525) absorption change in Arabidopsis leaves lacking zeaxanthin belongs to a red-shifted subpopulation of violaxanthin molecules formed during NPQ. The presence of the same ΔA(535) and ΔA(525) Raman signatures in vitro in aggregated LHCII, containing zeaxanthin and violaxanthin, respectively, leads to a new proposal for the origin of the xanthophyll red shifts associated with NPQ.  相似文献   

20.
The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1-state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in 13C-13C dipolar homonuclear correlation spectra on a uniformly 13C-labeled sample. In particular, we were able to resolve several chlorophyll 131 carbon resonances that are sensitive to hydrogen bonding to the 131-keto carbonyl group. The data show that 13C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in light-harvesting regulation through MAS solid-state NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号