首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nakamura S  Seki Y  Katoh E  Kidokoro S 《Biochemistry》2011,50(15):3116-3126
To understand the stabilization, folding, and functional mechanisms of proteins, it is very important to understand the structural and thermodynamic properties of the molten globule state. In this study, the global structure of the acid molten globule state, which we call MG1, of horse cytochrome c at low pH and high salt concentrations was evaluated by solution X-ray scattering (SXS), dynamic light scattering, and circular dichroism measurements. MG1 was globular and slightly (3%) larger than the native state, N. Calorimetric methods, such as differential scanning calorimetry and isothermal acid-titration calorimetry, were used to evaluate the thermodynamic parameters in the transitions of N to MG1 and MG1 to denatured state D of horse cytochrome c. The heat capacity change, ΔC(p), in the N-to-MG1 transition was determined to be 2.56 kJ K(-1) mol(-1), indicating the increase in the level of hydration in the MG1 state. Moreover, the intermediate state on the thermal N-to-D transition of horse cytochrome c at pH 4 under low-salt conditions showed the same structural and thermodynamic properties of the MG1 state in both SXS and calorimetric measurements. The Gibbs free energy changes (ΔG) for the N-to-MG1 and N-to-D transitions at 15 °C were 10.9 and 42.2 kJ mol(-1), respectively.  相似文献   

2.
Small-angle neutron and X-ray scattering, dynamic light scattering, X-ray diffraction coupled with differential scanning calorimetry, and Raman spectroscopy were applied to investigate unilamellar (ULVs) and multilamellar (MLVs) dimyristoylphosphatidylcholine (DMPC) vesicles in aqueous sucrose solutions with sucrose concentrations from 0 to 60% w/w. In case of ULVs, the addition of sucrose decreases the polydispersity of vesicle population. A minimum value of polydispersity was found at 20% sucrose. For sucrose concentration from 0 to 35% oligolamellar vesicles in the ULV population have a minimum presence. Vesicles with 5-10% sucrose exhibit the best stability in time. For the case of MLVs, sucrose influences the temperature of the phase transitions, but the internal membrane structure remains unchanged.  相似文献   

3.
Effect of recombinant chicken small heat shock protein with molecular mass 24 kDa (Hsp24) and recombinant human small heat shock protein with molecular mass 27 kDa (Hsp27) on the heat-induced denaturation and aggregation of skeletal F-actin was analyzed by means of differential scanning calorimetry and light scattering. All small heat shock proteins did not affect thermal unfolding of F-actin measured by differential scanning calorimetry, but effectively prevented aggregation of thermally denatured actin. Small heat shock protein formed stable complexes with denatured (but not with intact) F-actin. The size of these highly soluble complexes was smaller than the size of intact F-actin filaments. It is supposed that protective effect of small heat shock proteins on the cytoskeleton is at least partly due to prevention of aggregation of denatured actin.  相似文献   

4.
The role carbohydrate moieties play in determining the structure and energetics of glycolipid model membranes has been investigated by small- and wide-angle X-ray scattering, differential scanning densitometry (DSD), and differential scanning microcalorimetry (DSC). The dependence of a variety of thermodynamic and structural parameters on the stereochemistry of the OH groups in the pyranose ring and on the size of the sugar head group has been studied by using an homologous series of synthetic stereochemically uniform glyceroglycolipids having glucose, galactose, mannose, maltose, or trimaltose head groups and saturated ether-linked alkyl chains with 10, 12, 14, 16, or 18 carbon atoms per chain. The combined structural and thermodynamic data indicate that stereochemical changes of a single OH group in the pyranose ring can cause dramatic alterations in the stability and in the nature of the phase transitions of the membranes. The second equally important determinant of lipid interactions in the membrane is the size of the head group. A comparison of lipids with glucose, maltose, or trimaltose head groups and identical hydrophobic moieties has shown that increasing the size of the neutral carbohydrate head group strongly favors the bilayer-forming tendency of the glycolipids. These experimental results provide a verification of the geometric model advanced by Israelachvili et al. (1980) [Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980) Q. Rev. Biophys. 13, 121-200] to explain the preferences lipids exhibit for certain structures. Generally galactose head groups confer highest stability on the multilamellar model membranes as judged on the basis of the chain-melting transition. This is an interesting aspect in view of the fact that galactose moieties are frequently observed in membranes of thermophilic organisms. Glucose head groups provide lower stability but increase the number of stable intermediate structures that the corresponding lipids can adopt. Galactolipids do not even assume a stable intermediate L alpha phase for lipids with short chain length but perform only Lc----HII transitions in the first heating. The C2 isomer, mannose, modifies the phase preference in such a manner that only L beta----HII changes can occur. Maltose and trimaltose head groups prevent the adoption of the HII phase and permit only L beta----L alpha phase changes. The DSD studies resulted in a quantitative estimate for the volume change associated with the L alpha----HII transition of 14-Glc. The value of delta v = 0.005 mL/g supports the view that the volume difference between L alpha and HII is minute.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The formation of protein aggregates is important in many fields of life science and technology. The morphological and mechanical properties of protein solutions depend upon the molecular conformation and thermodynamic and environmental conditions. Non-native or unfolded proteins may be kinetically trapped into irreversible aggregates and undergo precipitation or gelation. Here, we study the thermal aggregation of lysozyme in neutral solutions. We characterise the irreversible unfolding of lysozyme by differential scanning calorimetry. The structural properties of aggregates and their mechanisms of formation with the eventual gelation are studied at high temperature by spectroscopic, rheological and scattering techniques. The experiments show that irreversible micron-sized aggregates are organised into larger clusters according to a classical mechanism of diffusion and coagulation, which leads to a percolative transition at high concentrations. At a smaller length scale, optical and atomic force microscopy images reveal the existence of compact aggregates, which are the origin of the aggregation irreversibility.  相似文献   

6.
pH-sensitive nonionic surfactant vesicles (niosomes) by polysorbate-20 (Tween-20) or polysorbate-20 derivatized by glycine (added as pH sensitive agent), were developed to deliver Ibuprofen (IBU) and Lidocaine (LID). For the physical-chemical characterization of vesicles (mean size, size distribution, zeta potential, vesicle morphology, bilayer properties and stability) dynamic light scattering (DLS), small angle X-ray scattering and fluorescence studies were performed. Potential cytotoxicity was evaluated on immortalized human keratinocyte cells (HaCaT) and on immortalized mouse fibroblasts Balb/3T3. In vivo antinociceptive activity (formalin test) and anti-inflammatory activity tests (paw edema induced by zymosan) in murine models were performed on drug-loaded niosomes. pH-sensitive niosomes were stable in the presence of 0 and 10% fetal bovine serum, non-cytotoxic and able to modify IBU or LID pharmacological activity in vivo. The synthesis of stimuli responsive surfactant, as an alternative to add pH-sensitive molecules to niosomes, could represent a promising delivery strategy for anesthetic and anti-inflammatory drugs.  相似文献   

7.
For aqueous solutions of di- and oligosaccharides thermodynamic properties have been investigated at subzero temperatures using differential scanning calorimetry. The amount of unfrozen water observed is found to increase linearly with the glass transition temperatures of anhydrous carbohydrates. Furthermore, the amount of unfrozen water shows a linear relationship with known solution properties of aqueous carbohydrates, such as partial molar compressibility and heat of solution. The different effectiveness among various di- and oligosaccharides to avoid ice formation is associated with the combination of constitutive monosaccharides and attendant molecular structure features including the position and type of the glycosidic linkage between the constituent units. More unfrozen water is induced in the presence of a carbohydrate having a poorer compatibility with the three-dimensional hydrogen-bond network of water. A series of these results obtained imply that there is a common key of carbohydrate stereochemistry governing several different thermodynamic amounts of a given system involving carbohydrates. In this context, a modified stereospecific-hydration model can be used to interpret the present results in terms of stereochemical effects of carbohydrates.  相似文献   

8.
Sodium caprylate was added to a pharmaceutical-grade human serum albumin (HSA) to stabilize the product. In this study we have aimed to establish how caprylate ligand protects HSA from thermal degradation. The fatty acid stabilizer was first removed from commercial HSA by charcoal treatment. Cleaned HSA was made to 10% w/v in pH 7.4 buffered solutions and doped with sodium caprylate in serial concentrations up to 0.16 mmol/g-protein. These solutions as well as a commercial HSA, human serum, and enriched-albumin fraction were subjected to differential scanning calorimetry (DSC) within the temperature range of 37–90°C at a 5.0°C/min scanning rate. The globular size of the cleaned HSA solutions was measured by dynamic light scattering. The denaturing temperatures for albumin with sodium caprylate and a commercial one were significantly higher than for albumin only. It was found that the protein globules of cleaned HSA were not as stable as that of the native one due to aggregation, and the caprylate ion may reduce the aggregation by enlarging the globules’ electrical double layer. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat DSC denaturing endotherms. The system turned from irreversible dominant Scheme: to reversible dominant Scheme: with the increase in caprylate concentration from null to ~0.08 mmol/g-protein. It was postulated that the caprylate ligand may decrease the rate of reversible unfolding as it binds to the IIIA domain which is prone to reversible unfolding/refolding and causes further difficulty for irreversible denaturation which, in turn, HSA can be stabilized.KEY WORDS: differential scanning calorimetry, human serum albumin, Lumry-Eyring model, protein denaturation, sodium caprylate  相似文献   

9.
The third albumin binding domain of streptococcal protein G strain 148 (G148-GA3) belongs to a novel class of prokaryotic albumin binding modules that is thought to support virulence in several bacterial species. Here, we characterize G148-GA3 folding and albumin binding by using differential scanning calorimetry and isothermal titration calorimetry to obtain the most complete set of thermodynamic state functions for any member of this medically significant module. When buffered at pH 7.0 the 46-amino acid alpha-helical domain melts at 72 degrees C and exhibits marginal stability (15 kJ/mol) at 37 degrees C. G148-GA3 unfolding is characterized by small contributions to entropy from non-hydrophobic forces and a low DeltaCp (1.1 kJ/(deg mol)). Isothermal titration calorimetry reveals that the domain has evolved to optimally bind human serum albumin near 37 degrees C with a binding constant of 1.4 x 10 7 M(-1). Analysis of G148-GA3 thermodynamics suggests that the domain experiences atypically small per residue changes in structural dynamics and heat capacity while transiting between folded and unfolded states.  相似文献   

10.
The effect of adsorption onto aluminum salt adjuvants on the structure and stability of three model protein antigens was studied using fluorescence and Fourier transform infrared spectroscopies, as well as isothermal titration and differential scanning calorimetric techniques. Lysozyme was preferentially adsorbed to aluminum phosphate (Adju-Phos), whereas ovalbumin and bovine serum albumin were better adsorbed to aluminum hydroxide (Alhydrogel). A linearized Langmuir adsorption isotherm was used to obtain information regarding the binding interactions between proteins and adjuvants. Binding energetics and stoichiometry data obtained from isothermal titration calorimetry measurements were complex. Based on the spectroscopic and differential scanning calorimetry studies, the structure of all three proteins, when adsorbed to the surface of an aluminum salt, was altered in such a way as to render the proteins less thermally stable. Besides the pharmaceutical significance of this destabilization, we consider the possibility that this phenomenon may facilitate the presentation of antigens and thus contribute to the adjuvant activity of the aluminum salts.  相似文献   

11.
《MABS-AUSTIN》2013,5(6):1072-1083
The Fc (fragment crystallizable) is a common structural region in immunoglobulin gamma (IgG) proteins, IgG-based multi-specific platforms, and Fc-fusion platform technologies. Changes in conformational stability, protein-protein interactions, and aggregation of NS0-produced human Fc1 were quantified experimentally as a function of pH (4 to 6) and temperature (30 to 77°C), using a combination of differential scanning calorimetry, laser light scattering, size-exclusion chromatography, and capillary electrophoresis. The Fc1 was O-glycosylated at position 3 (threonine), and confirmed to correspond to the intact IgG1 by comparison with Fc1 produced by cleavage of the parent IgG1. Changing the pH caused large effects for thermal unfolding transitions, but it caused surprisingly smaller effects for electrostatic protein-protein interactions. The aggregation behavior was qualitatively similar across different solution conditions, with soluble dimers and larger oligomers formed in most cases. Aggregation rates spanned approximately 5 orders of magnitude and could be divided into 2 regimes: (i) Arrhenius, unfolding-limited aggregation at temperatures near or above the midpoint-unfolding temperature of the CH2 domain; (ii) a non-Arrhenius regime at lower temperatures, presumably as a result of the temperature dependence of the unfolding enthalpy for the CH2 domain. The non-Arrhenius regime was most pronounced for lower temperatures. Together with the weak protein-protein repulsions, these highlight challenges that are expected for maintaining long-term stability of biotechnology products that are based on human Fc constructs.  相似文献   

12.
Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.  相似文献   

13.
We applied different methods, such as turbidity measurements, dynamic light scattering, differential scanning calorimetry and co-sedimentation assay, to analyze the interaction of small heat shock protein Hsp27 with isolated myosin head (myosin subfragment 1, S1) under heat-stress conditions. Upon heating at 43 degrees C, Hsp27 effectively suppresses S1 aggregation, and this effect is enhanced by mutations mimicking Hsp27 phosphorylation. However, Hsp27 was unable to prevent thermal unfolding of myosin heads and to maintain their ATPase activity under heat-shock conditions.  相似文献   

14.
The Fc (fragment crystallizable) is a common structural region in immunoglobulin gamma (IgG) proteins, IgG-based multi-specific platforms, and Fc-fusion platform technologies. Changes in conformational stability, protein-protein interactions, and aggregation of NS0-produced human Fc1 were quantified experimentally as a function of pH (4 to 6) and temperature (30 to 77°C), using a combination of differential scanning calorimetry, laser light scattering, size-exclusion chromatography, and capillary electrophoresis. The Fc1 was O-glycosylated at position 3 (threonine), and confirmed to correspond to the intact IgG1 by comparison with Fc1 produced by cleavage of the parent IgG1. Changing the pH caused large effects for thermal unfolding transitions, but it caused surprisingly smaller effects for electrostatic protein-protein interactions. The aggregation behavior was qualitatively similar across different solution conditions, with soluble dimers and larger oligomers formed in most cases. Aggregation rates spanned approximately 5 orders of magnitude and could be divided into 2 regimes: (i) Arrhenius, unfolding-limited aggregation at temperatures near or above the midpoint-unfolding temperature of the CH2 domain; (ii) a non-Arrhenius regime at lower temperatures, presumably as a result of the temperature dependence of the unfolding enthalpy for the CH2 domain. The non-Arrhenius regime was most pronounced for lower temperatures. Together with the weak protein-protein repulsions, these highlight challenges that are expected for maintaining long-term stability of biotechnology products that are based on human Fc constructs.  相似文献   

15.
The concentration dependence of the pressure- and temperature-induced cloud point transition (Pc and Tc, respectively) of aqueous solutions of an elastin-like polypeptide with a repeating pentapeptide Val-Pro-Gly-Ile-Gly sequence (MGLDGSMG(VPGIG)40VPLE) was investigated by using apparent light scattering, differential scanning calorimetry, and circular dichroism methods. In addition, the effects of salts and surfactants on these properties were investigated. The Pc and Tc of the present peptide in aqueous solution were strongly concentration dependent. The calorimetric measurements showed that the enthalpy of transitions was 300-400 kJ/mol, i.e., 7-10 kJ/mol per VPGIG pentamer. The Tc of the (VPGIG)40 solution was highly affected by the addition of inert salts or SDS. The effects of salts were consistent with those observed in the lyotropic series or Hoffmeister series. The CD spectrum at low peptide concentrations indicated that the present peptide forms type II beta-turn-like structure(s) at higher temperatures, but the temperature dependence of random coil diminishment (195 nm) and beta-turn formation (210 nm) were not exactly coincident. A hypothetical mechanism of the (VPGIG)40 phase transition that could account for these observations was postulated. Observations suggest that the temperature-responsive properties of the elastin model peptides occur via a mechanism involving conformational change-association-aggregation and that the first two are strongly interactive.  相似文献   

16.
The D-trehalose/D-maltose-binding protein (TMBP), a monomeric protein of 48 kDa, is one component of the trehalose and maltose uptake system. In the hyperthermophilic archaeon T. litoralis this is mediated by a protein-dependent ATP-binding cassette system transporter. The gene coding for a thermostable TMBP from the archaeon T. litoralis has been cloned, and the recombinant protein has been expressed in E. coli. The recombinant TMBP has been purified to homogeneity and characterized. It exhibits the same functional and structural properties as the native one. In fact, it is highly thermostable and binds both trehalose and maltose with high affinity. In this work we used differential scanning calorimetry studies together with a detailed analysis, at the molecular level, of the three-dimensional protein structure to shed light on the basis of the high thermostability exhibited by the recombinant TMBP from the archaeon T. litoralis. The obtained data suggest that the presence of trehalose does not change the overall mechanism of the denaturation of this protein but it selectively modifies the stability of the TMBP structural domains.  相似文献   

17.
The thermal denaturations of five revertant lambda repressors containing single amino acid substitutions in their N-terminal domains have been studied by differential scanning calorimetry. Two substitutions slightly decrease stability, and the remaining three render the protein more stable than wild type. The Gly48----Asn and Gly48----Ser proteins are 4 degrees C more stable than wild type. These two substitutions replace an alpha helical residue, and in each case a poor helix forming residue, glycine, is replaced by a residue with a higher helical propensity. We also present data showing that one revertant, Tyr22----Phe, has reduced operator DNA binding affinity despite its enhanced stability.  相似文献   

18.
The study of thermal denaturation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of alpha-crystallin by differential scanning calorimetry (DSC) showed that the position of the maximum on the DSC profile (T(max)) was shifted toward lower temperatures with increasing alpha-crystallin concentration. The diminishing GAPDH stability in the presence of alpha-crystallin has been explained assuming that heating of GAPDH induces dissociation of the tetrameric form of the enzyme into dimers interacting with alpha-crystallin. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. Suppression of thermal aggregation of GAPDH by alpha-crystallin was studied by dynamic light scattering under the conditions wherein temperature was elevated at a constant rate. The construction of the light scattering intensity versus the hydrodynamic radius (R(h)) plots enabled estimating the hydrodynamic radius of the start aggregates (R(h,0)). When aggregation of GAPDH was studied in the presence of alpha-crystallin, the start aggregates of lesser size were observed.  相似文献   

19.
The effects of cytosine protonation on the thermodynamic properties of parallel pyrimidine motif DNA triplex were investigated and characterized by different techniques, such as circular dichroism (CD), ultraviolet spectroscopy (UV) and differential scanning calorimetry (DSC). A thermodynamic model was developed which, by linking the cytosine ionization equilibrium to the dissociation process of the triplex, is able to rationalize the experimental data and to reproduce the pH dependence of the free energy, enthalpy and entropy changes associated with the triplex formation. The results are useful to systematically introduce the effect of pH in a more general model able to predict the stability of DNA triplexes on the basis of the sequence alone.  相似文献   

20.
Amrane S  Mergny JL 《Biochimie》2006,88(9):1125-1134
Trinucleotide repeats are involved in a number of debilitating diseases such as fragile-X syndrome and myotonic dystrophy. Eighteen to 75 base-long (CCG)(n) and (CGG)(n) oligodeoxynucleotides were analysed using a combination of biophysical (UV-absorbance, differential scanning calorimetry) and biochemical methods (non-denaturing gel electrophoresis, enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature which was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed a length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent experiments (calorimetry), as recently shown for CTG and CAG trinucleotides (Nucleic Acids Res. 33 (2005) 4065). Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots. Such behaviour is analysed in the framework of an intramolecular "branched" or "broken" hairpin model, in which long oligomers do not fold into a simple long hairpin-stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. These results suggest that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号