首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad. Breast cancer originates from subversions of normal growth regulatory pathways in mammary epithelial cells due to genetic mutations and epigenetic modifications in tumor suppressors, oncogenes and DNA repair genes. Diet is considered a highly modifiable determinant of breast cancer risk; thus, considerable efforts are focused on understanding how certain dietary factors may promote resistance of mammary epithelial cells to growth dysregulation. The recent indications that stromal cells contribute to the maintenance of the mammary epithelial ‘niche’ and the increasing appreciation for adipose tissue as an endocrine organ with a complex secretome have led to the novel paradigm that the mammary stromal compartment is itself a relevant target of bioactive dietary factors. In this review, we address the potential influence of dietary factors on mammary epithelial-stromal bidirectional signaling to provide mechanistic insights into how dietary factors may promote early mammary epithelial differentiation to decrease adult breast cancer risk.  相似文献   

2.
3.
Summary Immunoperoxidase methods were used to localize secretory component, immunoglobulin A and immunoglobulin G1 in mammary tissue from dairy cows. In lactating tissue, immunostaining for immunoglobulin A and secretory component was observed primarily in the luminal contents of alveoli. By day 2 of involution, alveolar epithelial cells stained for both immunoglobulin A and secretory component. Staining of alveolar epithelial cells for immunoglobulin A and secretory component continued throughout the period of mammary involution. No staining for secretory component was observed in the interalveolar stromal area. Immunoglobulin G1 immunostaining was localized primarily in the interalveolar areas in lactating tissue, but was localized at the apical and basolateral surface of alveolar cells on day 2 of involution. In contrast to immunoglobulin A, immunoglobulin G1 staining of epithelial cells did not persist and was primarily in the interalveolar areas by day 4. These results suggest that an increased localization of immunoglobulin G1 in bovine mammary epithelial cells may occur transiently in early involution, while an increase in immunoglobulin A and secretory component localization in epithelial cells persists throughout involution.  相似文献   

4.
田野  叶志球 《生物磁学》2009,(14):2688-2690
目的:探讨乳腺错构瘤的病理及影像学特征。方法:对11例乳腺错构瘤患者的临床特征、X线征象及病理表现进行回顾性分析。结果:患者平均年龄为46岁(26-58岁),10例可触及肿块(9例患者自己发现,1例体检摄片时发现),还有1例未能触及肿块。左乳7例,右乳4例,5/11(45.5%)肿块位于外上象限。11例钼靶X线平片均发现乳腺肿块,多数肿块呈卵圆形,边界清楚。肿块平均最大直径为6.Ocm(2.5-13.0cm),6/11(54.5%)肿块呈混合密度影。4/11例(36.4%)术前X线确诊。镜下:肿瘤由数量不等、杂乱无章的乳腺导管、小叶和成熟的脂肪细胞及纤维纽织混杂组成。结论:混合密度影是其特异性X线表现,不同个体肿瘤各成分比例的不同导致X线表现差异较大。  相似文献   

5.
Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).  相似文献   

6.
RANK and its ligand RANKL are key molecules in bone metabolism and are critically involved in pathologic bone disorders. Deregulation of the RANK/RANKL system is for example a main reason for the development of postmenopausal osteoporosis, which affects millions of women worldwide. Another essential function of RANK and RANKL is the development of a functional lactating mammary gland during pregnancy. Sex hormones, in particular progesterone, induce RANKL expression resulting in proliferation of mammary epithelial cells. Moreover, RANK and RANKL have been shown to regulate mammary epithelial stem cells. RANK and RANKL were also identified as critical mechanism in the development of hormone-induced breast cancer and metastatic spread to bone. In this review, we will focus on the various RANK/RANKL functions ranging from bone physiology, immune regulation, and initiation of breast cancer.  相似文献   

7.
8.
Several recent studies demonstrated that development, function and remodelling of mammary glands involved multipotent cells, but no specific molecular markers for mammary epithelial stem cells were revealed. These studies principally concerned human and mouse mammary tissue, but mammary stem cells could be a valuable tool in agricultural production and bioengineering in farm animals. The Musashi-1 (Msi 1) gene encodes an RNA binding protein, which is likely to be associated with self-renewal of neural, intestinal and mammary progenitor cells and is believed to influence the Notch signalling pathway. In this study Musashi-1 expression was detected using immunohistochemistry and in situ hybridisation analysis on mammary glands of ewes at different developmental stages. The protein expression was observed in the epithelial cells at all stages examined. In situ hybridization analysis showed that Msi 1 mRNA has an expression pattern similar to the encoded protein, with positive staining in both nuclei and cytoplasm of ductal, secretory and stromal cells. Ultrastructural in situ analysis confirmed the nuclear and cytoplasmatic expression of Msi. Quantitative analysis of Msi 1 gene expression showed a strong correlation with that of Ki-67, that is a marker of cell proliferation. This is the first report outlining expression of Msi 1 in ovine mammary glands during a complete cycle of lactation.  相似文献   

9.
Summary Interactions between epithelial cells and their environment are critical for normal function. Mammary epithelial cells require hormonal and extracellular matrix (ECM) signalling for the expression of tissue specific characteristics. With regard to ECM, cultured mammary epithelial cells synthesize and secrete milk proteins on stromal collagen I matrices. The onset of function coincides both with morphogenesis of a polarized epithelium and with deposition of basement membrane ECM basal to the cell layer. Mammary specific morphogenesis and biochemical differentiation is induced if mammary cells are cultured directly on exogenous basement membrane (EHS). Thus ECM may effect function by the concerted effect of permissivity for cell shape changes and the direct biochemical signalling of basement membrane molecules.A model is discussed where initial ECM control of mammary epithelial cell function originates in the interstitial matrix of stroma and subsequently transfers to the basement membrane when the epithelial cells have accumulated and deposited an organized basement membrane matrix.Dedicated to Professor Stuart Patton on the occasion of his 70th birthday.  相似文献   

10.
Summary To elucidate the putative role of annexin II (calpactin I) in the secretory function of mammary tissue its immunolocalisation in the mammary gland of pregnant and lactating mice was investigated by light- and electron microscopy using the immunoperoxidase technique. A low level of fairly uniform annexin II staining was evident throughout the gland despite its mixed composition during pregnancy. In lactating tissue it was revealed that apparently mature alveoli contained a concentration of annexin II staining outlining their epithelium. The staining was localised by immuno-electron microscopy to the apical membrane of these alveolar epithelial cells and their microvillar extentions. There was also an apparent association of annexin II with vesicles of a range of sizes located near, or actually fused with, the apical membrane. Many of the small, stained vasicles could clearly be identified as casein-containing vesicle while the large vesicles were apparently associated with either casein granules or possibly lipid. The appearance of a selective concentration of annexin II in apparently actively secreting mammary epithelial cells, as revealed in this study, is consistent with a possible structural and/or functional role for this protein at the membranes participating in the secretion of protein and possibly lipid from these secretory cells.  相似文献   

11.
Alpha-catenin is a structural molecule and essential to the function of epithelial adherens junctions. Its role in the morphogenesis of mammary epithelium was explored using experimental mouse genetics. Since loss of α-catenin in mice leads to embryonic lethality, the α-catenin gene was flanked by loxP sites and inactivated in mammary epithelium using the WAP-Cre and MMTV-Cre transgenes. Loss of α-catenin arrested alveolar epithelial expansion. These cells lacked proper polarity and markers of functional differentiation, which resulted in impaired milk protein gene expression. Without α-catenin, increased epithelial cell death was observed at parturition and the tissue resembled an involuted gland that is normally observed after weaning. Lastly, no tumors were detected in mammary tissue lacking α-catenin.  相似文献   

12.
Summary This study traced the origin of cells observed in human breast secretion samples obtained during lactation and describes the appearance of these cells following prolonged maintenance in vitro. Human milk contains a large number of single vacuolated foam cells and a small proportion of non-vacuolated epithelial cells in clusters. Foam cells are identified by their large size, the polarity of their cytoplasmic organelles, the variation in number and size of lipid vacuoles and the condensed chromatin of their eccentrically located nucleus. Both cell types originate by exfoliation from the mammary gland. This was established by comparing the structural characteristics of cells isolated from milk with those of the cuboidal cell linings of ducts and alveoli in lactating mammary tissue. Relatively pure populations of foam cells could be established from early lactation samples (3–7 days post/partum) while non-vacuolated epithelial cell clusters were more frequently cultured from late lactation specimens (1–10 days postweaning). Foam cells did not divide and lost cytoplasmic organization during prolonged culture. In contrast, non-vacuolated epithelium in clusters proliferated to form colonies of polygonal cells. These results, which imply that foam cells are an active form of the non-vacuolated mammary cells in clusters, call attention to one system for the study of the complex hormonal interactions necessary to induce and maintain lactation.Supported in part by NCI contract NO 1-CB-33898  相似文献   

13.
14.
Transgenic animals of the line 8 contain the WAP-SV-T transgene. Females of this line synthesise the SV40 T-antigen in mammary gland epithelial cells during pregnancy and the lactation period. All females are ‘milk-less’ and the offspring have to be nursed by foster mothers. The reason for this phenomenon is a premature apoptosis during late pregnancy. Nonetheless a significant number of mammary epithelial cells escape apoptosis and all transgenic females develop breast cancer after the first lactation period.  相似文献   

15.
Translin, a ubiquitous RNA/DNA-binding protein that forms a hetero-octamer together with Translin-associated factor X (TRAX), possesses endoribonuclease activity and plays a physiological role in restricting the size and differentiation of mesenchymal precursor cells. However, the precise role of Translin in epithelial cells remains unclear. Here, we show evidence that Translin restricts the growth of pubertal mammary epithelial cells. The mammary epithelia of Translin-null females exhibited retarded growth before puberty, but highly enhanced growth and DNA synthesis with increased ramification after the onset of puberty. Primary cultures of Translin-null mammary epithelial cells showed augmented DNA synthesis in a ligand-independent and ligand-enhanced manner. Translin-null ovariectomized mice implanted with slow-release estrogen pellets showed enhanced length and ramification of the mammary glands. Mammary epithelial growth was also observed in ovariectomized Translin-null mice implanted with placebo pellets. Luciferase reporter assays using embryonic fibroblasts from Translin-null mice showed unaltered estrogen receptor α function. These results indicate that Translin plays a physiological role in restricting intrinsic growth, beyond mesenchymal cells, of pubertal mammary epithelial cells.  相似文献   

16.
瘦素(Leptin)蛋白是调节机体能量代谢的关键因子之一。前期研究显示高原鼠兔Leptin蛋白发生了适应性进化。功能实验表明,在温暖或寒冷条件下高原鼠兔Leptin通过减少食物摄取和增加能量消耗调节能量平衡,显示了其调节适应性产热过程的潜力。本研究以高原鼠兔Leptin cDNA为模板扩增高原鼠兔obese (ob)基因编码区序列504 bp,改造并构建哺乳动物真核细胞乳腺特异表达载体pBC1-lep,同时通过组织块法原代培养建立奶山羊乳腺上皮细胞系,并通过pBC1-lep质粒脂质体法转染及转基因细胞的筛选,成功获得转染Leptin的阳性细胞。本研究为利用转基因动物实现奶山羊乳腺中特异表达高原鼠兔Leptin提供了一条可能的途径,完成了乳腺特异真核表达载体的构建。  相似文献   

17.
We have previously demonstrated in vitro that, in the endoplasmic reticulum and Golgi apparatus of mammary epithelial cells of lactating and pregnant mice, inositol 1,4,5-trisphosphate releases Ca2+ that has been stored in these organelles. In this study, we examined whether insulin and prolactin, essential for the growth of mammary gland and for lactation, influenced the activity of phosphatidylinositol-specific phospholipase C in mammary cells. In the plasma membrane fraction of mammary epithelial cells of the DDY mouse strain 5 days after the start of lactation after the first pregnancy, and with phosphatidylinositol as substrate, it was shown that the activity of phospholipase C was enhanced by about four times in the presence of insulin compared with the control. Such enhancement was not found in the membrane fraction treated with prolactin.  相似文献   

18.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) interacts with the Vitamin D3 receptor (VDR) to modulate proliferation and apoptosis in a variety of cell types, including breast cancer cells. In this review, we discuss three issues related to the role of the VDR in growth control: first, whether mammary glands lacking VDR exhibit abnormal growth; second, whether the VDR is essential for induction of apoptosis by 1,25(OH)2D3; and third, whether VDR up-regulation can sensitize cells to 1,25(OH)2D3. Studies from our laboratory have demonstrated that mammary glands from VDR knockout (VDR KO) mice exhibit accelerated growth and branching during puberty, pregnancy and lactation as compared to wild-type (WT) mice. In addition, involution after weaning, a process driven by epithelial cell apoptosis, proceeds at a slower rate in VDR KO mice compared to WT mice. Using cells isolated from VDR KO and WT mice, we report that both normal and transformed mammary cells derived from WT mice are growth inhibited by 1,25(OH)2D3, however, cells derived from VDR KO mice are completely unresponsive to 1,25(OH)2D3. In human breast cancer cells, we have identified a variety of agents, including steroid hormones, phytoestrogens and growth factors, that up-regulate VDR expression and enhance sensitivity to 1,25(OH)2D3-mediated growth inhibition. Collectively, these studies support a role for 1,25(OH)2D3 and the VDR in negative growth regulation of both normal mammary gland and breast cancer cells.  相似文献   

19.
Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.  相似文献   

20.
实现转基因生物乳腺反应器对外源蛋白的高效表达是目前生物制药亟待解决的难题。催乳素对泌乳期乳蛋白的合成与分泌具有重要的调控功能。通过转基因小鼠乳腺上皮细胞模型的建立,研究催乳素如何调控乳蛋白的表达,为提高乳腺反应器高效表达外源蛋白提供技术及理论支撑。应用机械破碎及胶原酶消化法,经差速贴壁纯化,成功培养含人转铁蛋白基因的小鼠乳腺上皮细胞,细胞上清液中检测到人转铁蛋白表达。细胞经牛催乳素诱导后人转铁蛋白的表达水平明显升高。利用转基因小鼠乳腺上皮细胞模型,可以进行催乳素和环境因素等对乳腺上皮细胞合成及分泌蛋白能力影响的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号