首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.  相似文献   

2.
Cancer is a genetic disease caused by defective control of cell proliferation. As cancer cells divide, the genetic defect is inherited by each daughter cell, leading to tumour development with possible progression to malignancy. The identification of those genes linked with cancer is essential for our understanding of the regulation of cell proliferation and for the therapeutic management of cancer cell growth. Recent studies have revealed that p53 is the most commonly affected gene in human cancer. It is a single copy gene and functions in the regulation of cell proliferation. Mutation of p53 is linked with tumour development, and this may involve abnormal functioning of mutant p53 protein. A mutant allele of p53 is functionally temperature-sensitive and can promote or suppress cell proliferation. The tertiary structure of the mutant protein is also sensitive to temperature and adopts promoter and suppressor forms of p53. A conformation model for the functioning of p53 proposes that wild-type p53 is induced to change from suppressor to promoter form during the cell growth response. This model predicts that any mutation that deregulates the normal control of p53 conformation may lead to cancer.  相似文献   

3.
Accumulation of mast cells (MCs) in tumours was described by Ehrlich in his doctoral thesis. Since this early account, ample evidence has been provided highlighting participation of MCs to the inflammatory reaction that occurs in many clinical and experimental tumour settings. MCs are bone marrow-derived tissue-homing leukocytes that are endowed with a panoply of releasable mediators and surface receptors. These cells actively take part to innate and acquired immune reactions as well as to a series of fundamental functions such as angiogenesis, tissue repair, and tissue remodelling. The involvement of MCs in tumour development is debated. Although some evidence suggests that MCs can promote tumourigenesis and tumour progression, there are some clinical sets as well as experimental tumour models in which MCs seem to have functions that favour the host. One of the major issues linking MCs to cancer is the ability of these cells to release potent pro-angiogenic factors. This review will focus on the most recent acquisitions about this intriguing field of research. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

4.
Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.  相似文献   

5.
Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions.  相似文献   

6.
The objective of gene therapy for the treatment of cancer is to kill tumour cells but preserve normal tissue; therefore, the ideal gene therapy agent would be targeted for specific transduction of tumour cells and have specificity in its cytotoxic action. A variety of strategies to achieve these aims have demonstrated promising results in the laboratory, including enzyme-pro-drug activating systems, correction of genetic mutations contributing to the malignant phenotype and stimulation of a T-cell-mediated anti-tumour immune response. The key to the success of all these strategies is an effective vector that can direct appropriate expression of the therapeutic gene. Viruses have many properties that can be adapted to achieve this therapeutic endpoint; furthermore, they can be engineered to replicate selectively in cancer cells and lyse them. The challenge now is to translate these features into effective therapies that can supplement or supplant existing treatments.  相似文献   

7.

In the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth. Over time, the primary tumour may undergo additional mutations that allow for the cancerous cells to spread throughout the body as metastases. Since metastatic development typically results in markedly worse patient outcomes, research into the identity and function of metastasis-associated biomarkers could eventually translate into clinical diagnostics or novel therapeutics. Although the general processes underpinning metastatic progression are understood, no clear cross-cancer biomarker profile has emerged. However, the literature suggests that some microRNAs (miRNAs) may play an important role in the metastatic progression of several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed an integrated analysis of mRNA and miRNA expression with paired metastatic and primary tumour samples to interrogate how the miRNA–mRNA regulatory axis influences metastatic progression. From this, we successfully built mRNA- and miRNA-specific classifiers that can discriminate pairs of metastatic and primary samples across 11 cancer types. In addition, we identified a number of miRNAs whose metastasis-associated dysregulation could predict mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-423. Taken together, our results suggest that metastatic samples have a common cross-cancer signature when compared with their primary tumour pair, and that these miRNA biomarkers can be used to predict metastatic status as well as mRNA expression.

  相似文献   

8.
The current mainstream in cancer research favours the idea that malignant tumour initiation is the result of a genetic mutation. Tumour development and progression is then explained as a sort of micro-evolutionary process, whereby an initial genetic alteration leads to abnormal proliferation of a single cell that leads to a population of clonally derived cells. It is widely claimed that tumour progression is driven by natural selection, based on the assumption that the initial tumour cells acquire some properties that endow such cells with a selective advantage over the normal cells from which the tumour cells are derived. The standard view assumes that the transformed bodily cell somehow acquires "responsiveness" to natural selection independently of the whole organism to which the cell belongs. Yet, it is never explained where such an acquired capacity to respond to natural selection by the individual bodily cell comes from. This situation poses many difficult questions that so far have been left unanswered. For example, there is no explanation why some cells belonging to an organised whole and as such having no independent capacity for survival, apparently become 'independent' entities, able to respond to selective pressures in an autonomous fashion and then to be evaluated by natural selection. Hereunder it is argued that such a qualitative change cannot be the consequence of specific genetic mutations. Moreover, it is shown that natural selection is unlikely to be acting within the organism during tumour development and progression and that tumour evolution is a random, non-adaptive process, driven by no fundamental biological principle. Thus, mutations in the so-called oncogenes and tumour suppressor genes observed in epithelial cancers (that constitute more than 90% of all cancers) are not the result of selection for better cellular growth or survival under restrictive conditions. Instead, here it is suggested that they are the consequence of genetic drift acting upon gene functions that become non-relevant, either for the individual or the species fitness, once the organism is past its reproductive prime and as such, they also become superfluous for cell survival in the short term. It is proposed that the origin of cancer is epigenetic and it is a consequence of the need for a continued turnover of the individuals that constitute a species.  相似文献   

9.
The secretome is the collection of all macromolecules secreted by a cell, and is a vital aspect of cell–cell communication in eukaryotes. In cancer, tumour cells often display secretomes with altered composition compared to the normal tissue from which they are derived. These changes can contribute to the acquisition and maintenance of the recognised hallmarks of cancer. In addition, evidence is emerging for a more sophisticated role for the tumour secretome in cancer, with significant implications for malignant disease progression. In this review, we highlight recent advances in our understanding of factors contributing to secretome alterations in cancer, including genetic mutations, microRNA-based regulation and the influence of the tumour microenvironment. The contribution of secreted factors in maintenance and function of cancer stem cells, and of tumour-derived factors in specification of a pre-metastatic niche are also discussed. Collectively, evidence from the current literature suggests that the tumour secretome, consisting of factors derived from cancer stem cells, non-stem cells and the surrounding stroma, plays a deterministic role in cancer progression, and may constitute a key therapeutic target in many cancers. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

10.
Major changes in intra- and extracellular pH homoeostasis are shared features of most solid tumours. These changes stem in large part from the metabolic shift of most cancer cells towards glycolytic metabolism and other processes associated with net acid production. In combination with oncogenic signalling and impact from factors in the tumour microenvironment, this upregulates acid-extruding plasma membrane transport proteins which maintain intracellular pH normal or even more alkaline compared with that of normal cells, while in turn acidifying the external microenvironment. Mounting evidence strongly indicates that this contributes significantly to cancer development by favouring e.g. cancer cell migration, invasion and chemotherapy resistance. Finally, while still under-explored, it seems likely that non-cancer cells in the tumour microenvironment also exhibit altered pH regulation and that this may contribute to their malignant properties. Thus, the physical tumour microenvironment and the cancer and stromal cells within it undergo important reciprocal interactions which modulate the tumour pH profile, in turn severely impacting on the course of cancer progression. Here, we summarize recent knowledge of tumour metabolism and the tumour microenvironment, placing it in the context of tumour pH regulation, and discuss how interfering with these properties may be exploited clinically.  相似文献   

11.
E-cadherin and P-cadherin are major contributors to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining integrity and homeostasis in adult tissues. It is now generally accepted that alterations in these two molecules are observed during tumour progression of most carcinomas. Genetic or epigenetic alterations in E- and P-cadherin-encoding genes (CDH1 and CDH3, respectively), or alterations in their proteins expression, often result in tissue disorder, cellular de-differentiation, increased invasiveness of tumour cells and ultimately in metastasis. In this review, we will discuss the major properties of E- and P-cadherin molecules, its regulation in normal tissue, and their alterations and role in cancer, with a specific focus on gastric and breast cancer models.  相似文献   

12.
13.
Cytoskeletal network in colon cancer: from genes to clinical application   总被引:2,自引:0,他引:2  
Colorectal cancer arises from well-defined sequential steps characterised by distinct genetic events. Abnormalities in the expression and functional activity of cell adhesion molecules are implicated in the development and progression of the majority of colorectal cancers. Intercellular (e.g. E-cadherin/catenin complex) and cell-matrix (e.g. integrins) adhesion molecules are more than just cementing substances but regulate cell polarity, differentiation, proliferation, migration and invasion. Many of these cellular events are mediated through their intimate association with the actin cytoskeletal network. A dynamic actin cytoskeleton characterises normal epithelial cells and polymerisation and depolymerisation of actin filaments enables cell shape to change during migration and mitosis. In colorectal cancer, cells lose actin cytoskeletal organisation and normal cell adhesion when they become invasive. Future investigations should allow the unravelling of new cytoskeletal network functions in tumour biology and may lead to the development of novel therapeutic strategies based on the manipulation of its associated molecules.  相似文献   

14.
The lack of specificity of cancer treatment causes damage to normal cells as well, which limits the therapeutic range. To circumvent this problem one would need to use an absolute difference between normal cells and cancer cells as therapeutic target. Such a difference exists in the genome of all individuals suffering from a tumor that is characterized by loss of genetic material [loss of heterozygosity (LOH)]. Due to LOH, the tumor is hemizygous for a number of genes, whereas the normal cells of the individual are heterozygous for these genes. Theoretically, polymorphic sites in these genes can be utilized to selectively target the cancer cells with an antisense oligonucleotide, provided that it can discriminate the alleles and inhibit gene expression. Furthermore, the targeted gene should be essential for cell survival, and 50% gene expression sufficient for the cell to survive. This will allow selective killing of cancer cells without concomitant toxicity to normal cells. As an initial step in the experimental test of this putative selective cancer cell therapy, we have developed a set of antisense phosphorothioate oligonucleotides which can discriminate the two alleles of a polymorphic site in the gene encoding the large subunit of RNA polymerase II. Our data show that the exact position of the antisense oligonucleotide on the mRNA is of essential importance for the oligonucleotide to be an effective inhibitor of gene expression. Shifting the oligonucleotide position only a few bases along the mRNA sequence will completely abolish the inhibitory activity of the antisense oligonucleotide. Reducing the length of the oligonucleotides to 16 bases increases the allele specificity. This study shows that it is possible to design oligonucleotides that selectively target the matched allele, whereas the expression level of the mismatched allele, that differs by one nucleotide, is only slightly affected.  相似文献   

15.
16.
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers.  相似文献   

17.
During cancer progression, bone marrow derived myeloid cells, including immature myeloid cells and macrophages, progressively accumulate at the primary tumour site where they contribute to the establishment of a tumour promoting microenvironment. A marked infiltration of macrophages into the stromal compartment and the generation of a desmoplastic stromal reaction is a particular characteristic of pancreatic ductal adenocarcinoma (PDA) and is thought to play a key role in disease progression and its response to therapy. Tumour associated macrophages (TAMs) foster PDA tumour progression by promoting angiogenesis, metastasis, and by suppressing an anti-tumourigenic immune response. Recent work also suggests that TAMs contribute to resistance to chemotherapy and to the emergence of cancer stem-like cells. Here we will review the current understanding of the biology and the pro-tumourigenic functions of TAMs in cancer and specifically in PDA, and highlight potential therapeutic strategies to target TAMs and to improve current therapies for pancreatic cancer. [BMB Reports 2013; 46(3): 131-138]  相似文献   

18.
High-throughput screening (HTS) provides a rapid and comprehensive approach to identifying compounds that target specific biological processes as well as genes that are essential to those processes. Here we describe a HTS assay for small molecules that induce either DNA re-replication or endoreduplication (i.e. excess DNA replication) selectively in cells derived from human cancers. Such molecules will be useful not only to investigate cell division and differentiation, but they may provide a novel approach to cancer chemotherapy. Since induction of DNA re-replication results in apoptosis, compounds that selectively induce DNA re-replication in cancer cells without doing so in normal cells could kill cancers in vivo without preventing normal cell proliferation. Furthermore, the same HTS assay can be adapted to screen siRNA molecules to identify genes whose products restrict genome duplication to once per cell division. Some of these genes might regulate the formation of terminally differentiated polyploid cells during normal human development, whereas others will prevent DNA re-replication during each cell division. Based on previous studies, we anticipate that one or more of the latter genes will prove to be essential for proliferation of cancer cells but not for normal cells, since many cancer cells are deficient in mechanisms that maintain genome stability.  相似文献   

19.
《Free radical research》2013,47(5):479-496
Abstract

Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.  相似文献   

20.
Abstract. Objectives: Tumour progression has been described as a sequence of traits or phenotypes that cells have to acquire if the neoplasm is to become an invasive and malignant cancer. Although genetic mutations that lead to these phenotypes are random, the process by which some of these mutations become successful and cells spread is influenced by tumour microenvironment and the presence of other cell phenotypes. It is thus likely that some phenotypes that are essential in tumour progression will emerge in the tumour population only with prior presence of other different phenotypes. Materials and methods: In this study, we use evolutionary game theory to analyse the interactions between three different tumour cell phenotypes defined by autonomous growth, anaerobic glycolysis, and cancer cell invasion. The model allows us to understand certain specific aspects of glioma progression such as the emergence of diffuse tumour cell invasion in low‐grade tumours. Results: We have found that the invasive phenotype is more likely to evolve after appearance of the glycolytic phenotype which would explain the ubiquitous presence of invasive growth in malignant tumours. Conclusions: The result suggests that therapies, which increase the fitness cost of switching to anaerobic glycolysis, might decrease probability of the emergence of more invasive phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号