首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The evolving field of cancer pharmacogenomics uses genetic profiling to predict the response of tumor and normal tissue to therapy. The narrow therapeutic index and heterogeneity of patient responses to chemotherapy and radiotherapy implies that the efficacy of these treatments could, potentially, be significantly enhanced by improving our understanding of the genetic bases for interindividual differences in their effects. The cytotoxicity of both chemotherapy and radiotherapy is to a large extent directly related to their ability to induce DNA damage. The ability of cancer cells to recognize and repair this damage contributes to therapeutic resistance. On the other hand, suboptimal DNA repair in normal tissue may negatively impact on normal tissue tolerance.More than 130 genes have been identified that are associated with human DNA repair, and single nucleotide polymorphisms of several of the DNA repair genes have been described recently. In this article, we present the current evidence implicating variations within DNA repair genes as important predictive and prognostic markers in cancer. We review evidence suggesting DNA repair genetic polymorphisms may significantly influence the clinical response to chemotherapy and radiotherapy, and may influence normal tissue tolerance to cancer treatments.  相似文献   

3.
Previous reports have implicated an induction of genes in IFN/STAT1 (Interferon/STAT1) signaling in radiation resistant and prosurvival tumor phenotypes in a number of cancer cell lines, and we have hypothesized that upregulation of these genes may be predictive of poor survival outcome and/or treatment response in Glioblastoma Multiforme (GBM) patients. We have developed a list of 8 genes related to IFN/STAT1 that we hypothesize to be predictive of poor survival in GBM patients. Our working hypothesis that over-expression of this gene signature predicts poor survival outcome in GBM patients was confirmed, and in addition, it was demonstrated that the survival model was highly subtype-dependent, with strong dependence in the Proneural subtype and no detected dependence in the Classical and Mesenchymal subtypes. We developed a specific multi-gene survival model for the Proneural subtype in the TCGA (the Cancer Genome Atlas) discovery set which we have validated in the TCGA validation set. In addition, we have performed network analysis in the form of Bayesian Network discovery and Ingenuity Pathway Analysis to further dissect the underlying biology of this gene signature in the etiology of GBM. We theorize that the strong predictive value of the IFN/STAT1 gene signature in the Proneural subtype may be due to chemotherapy and/or radiation resistance induced through prolonged constitutive signaling of these genes during the course of the illness. The results of this study have implications both for better prediction models for survival outcome in GBM and for improved understanding of the underlying subtype-specific molecular mechanisms for GBM tumor progression and treatment response.  相似文献   

4.
《Autophagy》2013,9(12):2163-2165
Neuroblastoma is the most common extracranial solid tumor in childhood. Despite intense multimodal therapy and many improvements through basic scientific and clinical research, the successful response of advanced-stage patients to chemotherapy remains poor. Autophagy is a cytoprotective mechanism that may help advanced cancer cells survive stressful conditions such as chemotherapy. Here we review our recent findings describing HDAC10 as a promoter of autophagy-mediated survival in neuroblastoma cells and identifying this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. These results propose a new and promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.  相似文献   

5.
Although notable progress has been made in the treatment of non-small-cell lung cancer (NSCLC) in recent years, this disease is still associated with a poor prognosis. Despite early-stage NSCLC is considered a potentially curable disease following complete resection, the majority of patients relapse and eventually die after surgery. Adjuvant chemotherapy prolongs survival, altough the absolute improvement in 5-year overall survival is only approximately 5%.Trying to understand the role of genes which could affect drug activity and response to treatment is a major challenge for establishing an individualised chemotherapy according to the specific genetic profile of each patient. Among genes involved in the DNA repair system, the excision repair cross-complementing 1 (ERCC1) is a useful markers of clinical resistance to platinum-based chemotherapy. In the International Lung Cancer Trial (IALT) adjuvant chemotherapy significantly prolonged survival among patients with ERCC1 negative tumors but not among ERCC1-positive patients. BRCA1 and ribonucleotide reductase M1 (RRM1), two other key enzymes in DNA synthesis and repair, appear to be modulators of drug sensitivity and may provide additional information for customizing adjuvant chemotherapy.Several clinical trials suggest that overexpression of class III β-tubulin is an adverse prognostic factor in cancer since it could be responsible for resistance to anti-tubulin agents. A retrospective analysis of NCIC JBR.10 trial showed that high tubulin III expression is associated with a higher risk of relapse following surgery alone but also with a higher probability of benefit from adjuvant cisplatin plus vinorelbine chemotherapy.Finally, the use of gene expression patterns such as the lung metagene model could provide a potential mechanism to refine the estimation of a patient’s risk of disease recurrence and could affect treatment decision in the management of early stage of NSCLC.In this review we will discuss the potential role of pharmacogenomic approaches to guide the medical treatment of early stage NSCLC.Key Words: NSCLC, adjuvant treatment, molecular markers, ERCC1, RRM1, β-tubulin, EGFR.  相似文献   

6.
Predictive signatures are gene expression profiles that should predict the response of tumors to chemotherapy in patients. Such signatures have been derived from the response of tumor cell lines to chemotherapy, but their usefulness in patients remains controversial, as the most spectacular published signatures are based on unreliable data. We discuss why it is difficult to derive meaningful predictive signatures from cell line panels and we argue that it is implausible that fully predictive signatures can be obtained for classical chemotherapy from oligo-based gene expression arrays. One reason is that resistance to chemotherapy can be caused by alterations in (the expression of) a single gene. We do not expect that such subtle alterations will be reliably picked up by standard gene expression profiling. We delineate alternative approaches that should be able to yield predictive markers that can be used for optimizing patient treatment.  相似文献   

7.
In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens.  相似文献   

8.
Epidemiologic models used for cancer risk prediction, such as the Gail model, are validated for populations undergoing regular screening but often have suboptimal individual predictive accuracy. Risk biomarkers may be employed to improve predictive accuracy based on the Gail or other epidemiologic models and, to the extent that they are reversible, may be used to assess response in phase I–II prevention trials. Risk biomarkers used as intermediate response endpoints include high mammographic breast density, intra-epithelial neoplasia, and cytomorphology with associated molecular markers such as Ki-67. At the present time these biomarkers may not be used to predict or monitor individual response to standard prevention interventions but are used in early phase clinical trials as preliminary indicators of efficacy.  相似文献   

9.
There are currently only two predictive markers of response to chemotherapy for breast cancer in routine clinical use, namely the Estrogen receptor-alpha and the HER2 receptor. The breast and ovarian cancer susceptibility gene BRCA1 is an important genetic factor in hereditary breast and ovarian cancer and there is increasing evidence of an important role for BRCA1 in the sporadic forms of both cancer types. Our group and numerous others have shown in both preclinical and clinical studies that BRCA1 is an important determinant of chemotherapy responses in breast cancer. In this review we will outline the current understanding of the role of BRCA1 as a determinant of response to DNA damaging and microtubule damaging chemotherapy. We will then discuss how the known functions of this multifaceted protein may provide mechanistic explanations for its role in chemotherapy responses.  相似文献   

10.
11.
In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens.Key words: RB, breast cancer, microarray, proliferation, cytostatics  相似文献   

12.
There are currently only two predictive markers of response to chemotherapy for breast cancer in routine clinical use, namely the Estrogen receptor-α and the HER2 receptor. The breast and ovarian cancer susceptibility gene BRCA1 is an important genetic factor in hereditary breast and ovarian cancer and there is increasing evidence of an important role for BRCA1 in the sporadic forms of both cancer types. Our group and numerous others have shown in both preclinical and clinical studies that BRCA1 is an important determinant of chemotherapy responses in breast cancer. In this review we will outline the current understanding of the role of BRCA1 as a determinant of response to DNA damaging and microtubule damaging chemotherapy. We will then discuss how the known functions of this multifaceted protein may provide mechanistic explanations for its role in chemotherapy responses.  相似文献   

13.
Gene deregulation in gastric cancer   总被引:5,自引:0,他引:5  
Stock M  Otto F 《Gene》2005,360(1):1-19
Despite its decreasing frequency in the Western world during recent decades, gastric cancer is still one of the leading causes of cancer-related deaths worldwide. Due to the oligosymptomatic course of early gastric cancer, most cases are diagnosed in the advanced stages of the disease. The curative potential of current standard treatment continues to be unsatisfactory, despite multimodal approaches involving surgery, chemotherapy and radiotherapy. Novel therapeutics including small molecules and monoclonal antibodies are being developed and have been partially introduced into clinical use in connection with neoplastic diseases such as chronic myeloid leukemia, non-Hodgkin's lymphoma and colorectal cancer. Thorough understanding of the changes in gene expression occurring during gastric carcinogenesis may help to develop targeted therapies and improve the treatment of this disease. Novel molecular biology techniques have generated a wealth of data on up- and down-regulation, activation and inhibition of specific pathways in gastric cancer. Here, we provide an overview of the different aspects of aberrant gene expression patterns in gastric cancer.  相似文献   

14.
15.
16.
The responses to ionizing radiation and other genotoxic environmental stresses are complex and are regulated by a number of overlapping molecular pathways. One such stress signaling pathway involves p53, which regulates the expression of over 100 genes already identified. It is also becoming increasingly apparent that the pattern of stress gene expression has some cell type specificity. It may be possible to exploit these differences in stress gene responsiveness as molecular markers through the use of a combined informatics and functional genomics approach. The techniques of microarray analysis potentially offer the opportunity to monitor changes in gene expression across the entire set of expressed genes in a cell or organism. As an initial step in the development of a functional genomics approach to stress gene analysis, we have recently demonstrated the utility of cDNA microarray hybridization to measure radiation-stress gene responses and identified a number of previously unknown radiation-regulated genes. The responses of some of these genes to DNA-damaging agents vary widely in cell lines from different tissues of origin and different genetic backgrounds. While this again highlights the importance of a cellular context to genotoxic stress responses, it also raises the prospect of expression-profiling of cell lines, tissues, and tumors. Such profiles may have a predictive value if they can define regions of ‘expression space’ that correlate with important endpoints, such as response to cancer therapy regimens, or identification of exposures to environmental toxins.  相似文献   

17.
Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.  相似文献   

18.
The role of p53 in treatment responses of lung cancer   总被引:11,自引:0,他引:11  
Resistance to radio- and chemotherapy is a major problem in treatment responses of lung cancer. In this disease, biological markers, that can be predictive of response to treatment for guiding clinical practice, still need to be validated. Radiotherapy and most chemotherapeutic agents directly target DNA and in response to such therapies, p53 functions as a coordinator of the DNA repair process, cell cycle arrest, and apoptosis. In fact, it participates in the main DNA repair systems operative in cells, including NHEJ, HRR, NER, BER, and MMR. Given the high p53 mutation frequency in lung cancer which likely impairs some of the p53-mediated functions, a role of p53 as a predictive marker for treatment responses has been suggested. In this review, we summarize the conflicting results coming from preclinical and clinical studies on the role of p53 as a predictive marker of responses to chemotherapy or radiotherapy in lung cancer.  相似文献   

19.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells (CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of post-translational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.  相似文献   

20.
The mechanism of cisplatin-resistance in ovarian cancer   总被引:1,自引:0,他引:1  
Kikuchi Y 《Human cell》2001,14(2):115-133
Cisplatin and its analogues have been most frequently used for treatment of human cancer including ovarian cancer. Most advanced ovarian cancer which was fatal before introduction of cisplatin have become to be treated for cure by combination chemotherapy containing cisplatin and its analogues. Thus, combination chemotherapy containing cisplatin and carboplatin have become a standard chemotherapy for treatment of ovarian cancer. Initially, platinum-based combination chemotherapy is associated with a 60-70% clinical response rate. However, the overall 5-year survival rate for advanced ovarian cancer patients is still around 20-30%. This low survival rate is due to the fact that some primary tumors and most recurrent tumors develop drug resistance that leads to treatment failure. Thus, overcoming drug resistance is the key to successful treatment of ovarian cancer. The mechanism of cisplatin-resistance in ovarian cancer is multifactorial, and accumulation of multiple genetic changes may lead to the drug-resistant phenotype. In this review, we report several genetic factors conferring cisplatin-resistance which have been elucidated in our laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号