首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg2+ dependence of guanine nucleotide binding to tubulin   总被引:1,自引:0,他引:1  
The relationship between the concentration of Mg2+ and the binding of GDP and GTP to tubulin dimers was investigated by measuring the displacement of the nucleotide bound at the exchangeable site (E-site) by radiolabeled GDP and GTP. A wide range of concentrations of GTP, GDP, and Mg2+ was explored. In the near absence of Mg2+, the affinity of tubulin for GDP was found to be much greater than its affinity for GTP. In the presence of 1.0 mM Mg2+, however, its affinity for GDP was slightly less than for GTP. The results could be quantitatively described in terms of a small number of reversible equilibria. Equilibrium constants, pertaining to measurements at 0 degrees C, in 0.1 M piperazine-N,N'-bis(2-ethanesulfonic acid), 0.2 mM dithioerythritol, 2 mM EGTA, pH 6.9, were obtained by nonlinear least squares fitting of the data. When the association constant of tubulin for GDP uncomplexed with Mg2+ was taken to be 1.6 X 10(7) M-1, that for uncomplexed GTP was found to be no larger than 1.4 x 10(4) M-1, at least 1100-fold smaller. The association constant of tubulin for the GDP.Mg2+ complex was found to be 2.5-2.7 x 10(7) M-1, while that for the GTP.Mg2+ complex is 6.4-9.0 x 10(7) M-1.  相似文献   

2.
Tubulin exchanges divalent cations at both guanine nucleotide-binding sites   总被引:2,自引:0,他引:2  
The tubulin heterodimer binds a molecule of GTP at the nonexchangeable nucleotide-binding site (N-site) and either GDP or GTP at the exchangeable nucleotide-binding site (E-site). Mg2+ is known to be tightly linked to the binding of GTP at the E-site (Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) J. Biol. Chem. 262, 17278-17284). Measurements of the exchange of Mn2+ for bound Mg2+ (as monitored by atomic absorption and EPR) demonstrate that tubulin which has GDP at the E-site possesses one high affinity metal-binding site and that tubulin which has GTP at the E-site possesses two such sites. The apparent association constants are 0.7-1.1 x 10(6) M-1 for Mg2+ and approximately 4.1-4.9 x 10(7) M-1 for Mn2+. Divalent cations do bind to GDP at the E-site, but with much lower affinity (2.0-2.3 x 10(3) M-1 for Mg2+ and 3.9-6.6 x 10(3) M-1 for Mn2+). These data suggest that divalent cations are involved in GTP binding to both the N- and E-sites of tubulin. The N-site metal exchanges slowly (kapp = 0.020 min-1), suggesting a mechanism involving protein "breathing" or heterodimer dissociation. The N-site metal exchange rate is independent of the concentration of protein and metal, an observation consistent with the possibility that a dynamic breathing process is the rate-limiting step. The exchange of Mn2+ for Mg2+ has no effect on the secondary structure of tubulin at 4 degrees C or on the ability of tubulin to form microtubules. These results have important consequences for the interpretation of distance measurements within the tubulin dimer using paramagnetic ions. They are also relevant to the detailed mechanism of divalent cation release from microtubules after GTP hydrolysis.  相似文献   

3.
In an attempt to determine whether the tightly bound Mg2+ found in purified tubulin in associated with the N-site GTP or the E-site GDP or GTP, we removed the E-site nucleotide by several means: (i) alkaline phosphatase treatment; (ii) displacement using excess GMPPCP; and (iii) polymerizing tubulin in the presence of alkaline phosphatase and non-hydrolyzable analogues. The Mg2+ content remained equal to about 1 mol/mol tubulin under conditions where denaturation did not occur. Moreover, the Mg/GTP ratio always remained equal to 1. These results indicate that the Mg2+ is associated with the N-site GTP.  相似文献   

4.
GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg2+, which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on α-tubulin, based on molecular modeling studies.  相似文献   

5.
The binding of the new vincaalkaloid vinzolidine to tubulin 6 S was investigated by using fluorescence quenching methods. The value of the apparent equilibrium binding constant was found to depend on the phosphorylation state of the guanine nucleotide bound to the tubulin exchangeable site (E-site), with Ka values of 4.9 X 10(4) and 8.19 X 10(4) M-1 for GTP- and GDP-tubulin, respectively. The effect of Mg2+ ions on this binding was more important on GTP-tubulin than on GDP-tubulin, and might be related to the existence of Mg2+ site(s) independent of the nucleotide.  相似文献   

6.
We describe in vitro microtubule assembly that exhibits, in bulk solution, behavior consistent with the GTP cap model of dynamic instability. Microtubules assembled from pure tubulin in the absence of free nucleotides could undergo one cycle of assembly, but could not sustain an assembly plateau. After the initial peak of assembly was reached and bound E-site GTP hydrolyzed to GDP, the microtubules gradually disassembled. We studied buffer conditions that maximized this disassembly while still allowing robust assembly to take place. While both glycerol and glutamate increased the rate of initial assembly and then slowed disassembly, magnesium promoted initial assembly and, surprisingly, enhanced disassembly. After cooling, a second cycle of assembly was unsuccessful unless GTP or the hydrolyzable GTP analogue GMPCPOP was readded. The nonhydrolyzable GTP analogues GMPPNP and GMPPCP could not support the second assembly cycle in the absence of E-site GTP. Analysis using HPLC found no evidence that GMPPNP, GMPPCP, or ATP could bind to free tubulin, and these nucleotides did not compete with GTP for the E-site. We have, however, demonstrated that the nonhydrolyzable GTP analogues and ATP do have an important effect on microtubule assembly. GMPPNP, GMPPCP, and ATP could each enhance the rate of assembly and stabilize the plateau of assembled microtubules against disassembly, while not binding appreciably to free tubulin. We conclude that these nucleotides, as well as GTP itself, enhance assembly by binding to a site on microtubules that is not present on free, unpolymerized tubulin. We estimate the affinity (KD) of the polymeric site for nucleotide triphosphates to be approximately 10(-4)M.  相似文献   

7.
Differential effects of magnesium on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Magnesium-depleted 2-(N-morpholino)ethanesulfonate (Mes), glutamate, tubulin and microtubule-associated proteins were prepared and used to study the effects of exogenously added MgCl2 on tubulin-nucleotide interactions in 0.1 M Mes with microtubule-associated proteins and in 1.0 M glutamate. Endogenous levels of Mg2+ in the systems studied were approximately stoichiometric with the tubulin concentrations and largely derived from the tubulin. We examined the effects of added Mg2+ on tubulin polymerization, GDP inhibition of polymerization, binding of GDP and GTP to tubulin, and GTP hydrolysis. Exogenously added Mg2+ had markedly different effects on these reactions. The order of their sensitivity for a requirement for added Mg2+ was as follows: GTP binding greater than GTP hydrolysis greater than polymerization greater than GDP binding. Inhibition of polymerization by GDP varied inversely with the Mg2+ concentration and was greatest in the absence of the cation. These results indicate that GDP and GDP-Mg2+ interact with similar affinity at the exchangeable site, while GTP-Mg2+ has a higher affinity for tubulin than does free GTP. Nevertheless, under appropriate conditions, free GTP can interact sufficiently well with tubulin to permit both nucleation and elongation reactions.  相似文献   

8.
The Caulobacter crescentus CgtA protein is a member of the Obg-GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA specifically bound GTP and GDP but not GMP or ATP. CgtA bound GTP and GDP with moderate affinity at 30 degrees C and displayed equilibrium binding constants of 1.2 and 0.5 microM, respectively, in the presence of Mg(2+). In the absence of Mg(2+), the affinity of CgtA for GTP and GDP was reduced 59- and 6-fold, respectively. N-Methyl-3'-O-anthranoyl (mant)-guanine nucleotide analogs were used to quantify GDP and GTP exchange. Spontaneous dissociation of both GDP and GTP in the presence of 5 to 12 mM Mg(2+) was extremely rapid (k(d) = 1.4 and 1.5 s(-1), respectively), 10(3)- to 10(5)-fold faster than that of the well-characterized eukaryotic Ras-like GTP-binding proteins. The dissociation rate constant of GDP increased sevenfold in the absence of Mg(2+). Finally, there was a low inherent GTPase activity with a single-turnover rate constant of 5.0 x 10(-4) s(-1) corresponding to a half-life of hydrolysis of 23 min. These data clearly demonstrate that the guanine nucleotide binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. Furthermore, these data are consistent with a model whereby the nucleotide occupancy of CgtA is controlled by the intracellular levels of guanine nucleotides.  相似文献   

9.
A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity.  相似文献   

10.
FtsZ, a tubulin homologue, forms a cytokinetic ring at the site of cell division in prokaryotes. The ring is thought to consist of polymers that assemble in a strictly GTP-dependent way. GTP, but not guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), has been shown to induce polymerization of FtsZ, whereas in vitro Ca2+ is known to inhibit the GTP hydrolysis activity of FtsZ. We have studied FtsZ dynamics at limiting GTP concentrations in the presence of 10 mM Ca2+. GTP and its non-hydrolysable analogue GTP-gamma-S bind FtsZ with similar affinity, whereas the non-hydrolysable analogue guanylyl-imidodiphosphate (GMP-PNP) is a poor substrate. Preformed FtsZ polymers can be stabilized by GTP-gamma-S and are destabilized by GDP. As more than 95% of the nucleotide associated with the FtsZ polymer is in the GDP form, it is concluded that GTP hydrolysis by itself does not trigger FtsZ polymer disassembly. Strikingly, GTP-gamma-S exchanges only a small portion of the FtsZ polymer-bound GDP. These data suggest that FtsZ polymers are stabilized by a small fraction of GTP-containing FtsZ subunits. These subunits may be located either throughout the polymer or at the polymer ends, forming a GTP cap similar to tubulin.  相似文献   

11.
The removal of tightly bound GDP from the exchangeable nucleotide-binding site of tubulin has been performed with alkaline phosphatase under conditions which essentially retain the assembly properties of the protein. When microtubule protein is treated with alkaline phosphatase, nucleotide is selectively removed from tubulin dimer rather than from MAP (microtubule-associated protein)-containing oligomeric species. Tubulin devoid of E-site (the exchangeable nucleotide-binding site of the tubulin dimer) nucleotide shows enhanced proteolytic susceptibility of the beta-subunit to thermolysin and decreased protein stability, consistent with nucleotide removal causing changes in protein tertiary structure. Pyrophosphate ion (3 mM) is able to promote formation of normal microtubules in the complete absence of GTP by incubation at 37 degrees C either with nucleotide-depleted microtubule protein or with nucleotide-depleted tubulin dimer to which MAPs have been added. The resulting microtubules contain up to 80% of tubulin lacking E-site nucleotide. In addition to its effects on nucleation, pyrophosphate competes weakly with GDP bound at the E-site. It is deduced that binding of pyrophosphate at a vacant E-site can promote microtubule assembly. The minimum structural requirement for ligands to induce tubulin assembly apparently involves charge neutralization at the E-site by bidentate ligation, which stabilizes protein domains in a favourable orientation for promoting the supramolecular protein-protein interactions involved in microtubule formation.  相似文献   

12.
Stoichiometric exchange of GTP for GDP on heterotrimeric G protein alpha (Galpha) subunits is essential to most hormone and neurotransmitter initiated signal transduction. Galphas are stably activated in a Mg2+ complex with GTPgammaS, a nonhydrolyzable GTP analogue that is reported to bind Galpha, with very high affinity. Yet, it is common to find that substantial amounts (30-90%) of purified G proteins cannot be activated. Inactivatable G protein has heretofore been thought to have become "denatured" during formation of the obligatory nucleotide-free or empty (MT) Galpha-state that is intermediary to GDP/GTP exchange at a single binding site. We find Galpha native secondary and tertiary structure to persist during formation of the irreversibly inactivatable state of transducin. MT Galpha is therefore irreversibly misfolded rather than denatured. Inactivation by misfolding is found to compete kinetically with protective but weak preequilibrium nucleotide binding at micromolar ambient GTPgammaS concentrations. Because of the weak preequilibrium, quantitative protection against Galpha aggregation is only achieved at free nucleotide concentrations 10-100 times higher than those commonly employed in G protein radio-nucleotide binding studies. Initial GTP protection is also poor because of the extreme slowness of an intramolecular Galpha refolding step (isomerization) necessary for GTP sequestration after its weak preequilibrium binding. Of the two slowly interconverting Galpha x GTP isomers described here, only the second can bind Mg2+, "locking" GTP in place with a large net rise in GTP binding affinity. A companion Galpha x GDP isomerization reaction is identified as the cause of the very slow spontaneous GDP dissociation that characterizes G protein nucleotide exchange and low spontaneous background activity in the absence of GPCR activation. Galpha x GDP and Galpha x GTP isomerization reactions are proposed as the dual target for GPCR catalysis of nucleotide exchange.  相似文献   

13.
The role of GTP hydrolysis in microtubule dynamics has been reinvestigated using an analogue of GTP, guanylyl-(alpha, beta)-methylene-diphosphonate (GMPCPP). This analogue binds to the tubulin exchangeable nucleotide binding site (E-site) with an affinity four to eightfold lower than GTP and promotes the polymerization of normal microtubules. The polymerization rate of microtubules with GMPCPP-tubulin is very similar to that of GTP-tubulin. However, in contrast to microtubules polymerized with GTP, GMPCPP-microtubules do not depolymerize rapidly after isothermal dilution. The depolymerization rate of GMPCPP-microtubules is 0.1 s-1 compared with 500 s-1 for GDP-microtubules. GMPCPP also completely suppresses dynamic instability. Contrary to previous work, we find that the beta--gamma bond of GMPCPP is hydrolyzed extremely slowly after incorporation into the microtubule lattice, with a rate constant of 4 x 10(-7) s-1. Because GMPCPP hydrolysis is negligible over the course of a polymerization experiment, it can be used to test the role of hydrolysis in microtubule dynamics. Our results provide strong new evidence for the idea that GTP hydrolysis by tubulin is not required for normal polymerization but is essential for depolymerization and thus for dynamic instability. Because GMPCPP strongly promotes spontaneous nucleation of microtubules, we propose that GTP hydrolysis by tubulin also plays the important biological role of inhibiting spontaneous microtubule nucleation.  相似文献   

14.
C M Lin  E Hamel 《Biochemistry》1987,26(22):7173-7182
We previously reported that direct incorporation of GDP (i.e., without an initial hydrolysis of GTP) into microtubules occurs throughout an assembly cycle in a constant proportion. The exact proportion varied with reaction conditions, becoming greater under all conditions in which tubulin-GDP increased relative to tubulin-GTP (low Mg2+ and GTP concentrations, high tubulin concentrations, and in the presence of exogenous GDP). These findings led us to explore further interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly. We have now determined the minimum amount of tubulin-GTP required for the initiation of microtubule assembly and the relative efficiency with which tubulin-GDP participates in microtubule elongation. When GTP, GDP, and tubulin concentrations were varied at a constant Mg2+ concentration (0.2 mM), initiation of assembly required that 35% of the nucleotide-bearing tubulin be in the form of tubulin-GTP, and incorporation of tubulin-GDP into microtubules during elongation was only 60% as efficient as would be predicted on the basis of its proportional concentration in the reaction mixtures. Very different results were obtained when the Mg2+ concentration was varied. Even though Mg2+ enhances the binding of GTP to tubulin (the equilibrium constant for the exchange of GTP for GDP was 0.2 in the absence of exogenous Mg2+, 3 with 0.2 mM Mg2+, 5 with 0.5 mM Mg2+, and 11 with 2 and 4 mM Mg2+), as Mg2+ was increased the proportion of tubulin-GTP required for the initiation of microtubule assembly rose greatly, and the direct incorporation of tubulin-GDP into microtubules during elongation became progressively more efficient. In the absence of exogenous Mg2+, only 20% tubulin-GTP was required for initiation, and tubulin-GDP was directly incorporated into microtubules half as efficiently as would be predicted on the basis of its concentration in the reaction mixture. At the highest Mg2+ concentration examined (4 mM), 80% tubulin-GTP was required for initiation of assembly, and tubulin-GDP was incorporated into microtubules as efficiently as tubulin-GTP.  相似文献   

15.
The inhibitory effects of guanosine 5'-(gamma-fluorotriphosphate) [GTP(gamma F)] on both the polymerization and the colchicine-dependent GTPase activity of calf brain tubulin have been studied. The results demonstrate that this analogue of GTP, with a fluorine atom on the gamma-phosphate, is a reversible competitive dead-end inhibitor of the colchicine-induced GTPase activity with a K1 value of (1.8 +/- 0.6) X 10(-4) M. GTP(gamma F) did not promote assembly of tubulin from which the E-site guanine nucleotide had been removed. It binds to the exchangeable nucleotide site competitively with respect to GTP, diminishing both the rate and extent of tubulin polymerization. Treatment in terms of the Oosawa-Kasai model of the inhibitory effect of GTP(gamma F) on the assembly led to a value of Kdis = 1.1 X 10(-6) M for the complex GTP(gamma F)-tubulin. This analogue does not bind to the postulated third site. The growing of tubulin polymers at 37 degrees C was arrested by GTP(gamma F), and only limited depolymerization was induced by the addition of this analogue after assembly in the presence of GTP. This result confirms that the E-site is blocked in the polymer and that this analogue can bind only to the ends of the polymers. Sedimentation velocity and circular dichroism studies showed that the conformation of the tubulin-GTP(gamma F) complex is not identical with that of tubulin-GTP. This is caused by the replacement of the hydroxyl group in the gamma-phosphate by the fluorine group, which have 2.20- and 1.35-A van der Waals radii, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We present here a systematic study of ionic strength and divalent cation effects on Vinca alkaloid-induced tubulin spiral formation. We used sedimentation velocity experiments and quantitative fitting of weight-average sedimentation coefficients versus free drug concentrations to obtain thermodynamic parameters under various solution conditions. The addition of 50-150 mM NaCl to our standard buffer (10 mM piperazine-N,N'-bis(2-ethanesulfonic acid), 1 mM Mg, 50 microM GDP or GTP, pH 6.9) enhances overall vinblastine- or vincristine-induced tubulin self-association. As demonstrated in previous studies, GDP enhances overall self-association more than GTP, although in the presence of salt, GDP enhancement is reduced. For example, in 150 mM NaCl, GDP enhancement is 0.24 kcal/mol for vinblastine and 0.36 kcal/mol for vincristine versus an average enhancement of 0.87 (+/- 0.34) kcal/mol for the same drugs in the absence of salt. Wyman linkage analysis of experiments with vinblastine or vincristine over a range of NaCl concentrations showed a twofold increase in the change in NaCl bound to drug-induced spirals in the presence of GTP compared to GDP. These data indicate that GDP enhancement of Vinca alkaloid-induced tubulin self-association is due in part to electrostatic inhibition in the GTP state. In the absence of NaCl, we found that vinblastine and 1 mM Mn2+ or Ca2+ causes immediate condensation of tubulin. The predominant aggregates observed by electron microscopy are large sheets. This effect was not found with 1 mM Mg2+. At 100 microM cation concentrations (Mn2+, Mg2+, or Ca2+), GDP enhances vinblastine-induced spiral formation by 0.55 (+/- 0.26) kcal/mol. This effect is found only in K2, the association of liganded heterodimers at the ends of growing spirals. There is no GDP enhancement of K1, the binding of drug to heterodimer, although K1 is dependent upon the divalent cation concentration. NaCl diminishes tubulin condensation, probably by inhibiting lateral association, and allows an investigation of higher divalent cation concentrations. In the presence of 150 mM NaCl plus 1 mM divalent cations (Mn2+, Mg2+, or Ca2+) GDP enhances vinblastine-induced spiral formation by 0.35 (+/- 0.21) kcal/mol. Relaxation times determined by stopped-flow light scattering experiments in the presence of 150 mM NaCl and vincristine are severalfold longer than those in the presence of vinblastine, consistent with a mechanism involving the redistribution of longer polymers. Unlike previous results in the absence of NaCl, relaxation times in the presence of NaCl are only weekly protein concentration dependent, suggesting the absence of annealing or an additional rate-limiting step in the mechanism.  相似文献   

17.
The H-ras gene product p21H has been mutated at Phe-28, which makes a hydrophobic interaction with the guanine base of bound GDP/GTP. The mutation Phe-28----Leu drastically increases nucleotide dissociation rates without affecting association rates. This is due to a perturbed binding of base, alpha- and beta-phosphate, and Mg2+, as evidenced from 31P NMR and fluorescence measurements. The region around the gamma-phosphate appears normal. The affinity of Mg2+ for both the di- and the triphosphate conformation of the mutant was also measured by fluorescence. The association constant is 3.5 x 10(7) M-1 for the Gpp(NH)p complex, 500 times higher than for the GDP form. The mutation does not change appreciably the intrinsic or the GTPase activating protein (GAP)-stimulated GTPase. The mutated protein induces neurite differentiation however when pressure-loaded into PC12 cells, which is equivalent to transformation of NIH 3T3 cells. This shows that p21 (F28L) is converted to the GDP bound form by GAP but is transforming because the high dissociation rate for nucleotides leads to a protein predominantly in the active GTP bound form.  相似文献   

18.
We have determined the binding affinity for binding of the four purine nucleoside triphosphates GTP, ITP, XTP, and ATP to E-site nucleotide- and nucleoside diphosphate kinase-depleted tubulin. The relative binding affinities are 3000 for GTP, 10 for ITP, 2 for XTP, and 1 for ATP. Thus, the 2-exocyclic amino group in GTP is important in determining the nucleotide specificity of tubulin and may interact with a hydrogen bond acceptor group in the protein. The 6-oxo group also makes a contribution to the high affinity for GTP. NMR ROESY experiments indicate that the four nucleotides have different average conformations in solution. ATP and XTP are characterized by a high anti conformation, ITP by a medium anti conformation, and GTP by a low anti conformation. Possibly, the preferred solution conformation contributes to the differences in affinities. When the tubulin E-site is saturated with nucleotide, there appears to be little difference in the ability of the four nucleotides to stimulate assembly. The critical protein concentration is essentially identical in reactions using the four nucleotides. All four of the nucleotides were hydrolyzed during the assembly reaction, and the NDPs were incorporated into the microtubule. We also examined the binding of two gamma-phosphoryl-modified GTP photoaffinity analogues, p(3)-1, 4-azidoanilido-GTP and p(3)-1,3-acetylanilido-GTP. These analogues are inhibitors of the assembly reaction and bind to tubulin with affinities that are 15- and 50-fold lower, respectively, than the affinty for GTP. The affinity of GTP is less sensitive to substitutions at the gamma-phosphoryl position that to changes in the purine ring.  相似文献   

19.
A new method was developed to follow the rate of activation of adenylate cyclase in rat brain membranes by rapid freezing and N-ethylmaleimide treatment at 0 degrees C. This method was used to investigate the relationship between the rate of activation of adenylate cyclase by p(NH)ppG and GTP gamma S and their apparent affinities. These studies established the following. 1) The kinetics of activation by p(NH)ppG and GTP gamma S were indistinguishable although the apparent affinity of p(NH)ppG was 20-fold lower than the affinity of GTP gamma S. Activation was first order, kobs varying approximately 1.5-fold (average t 1/2 = 3.5 min, 30 degrees C) between 20-90% occupancy by either guanine nucleotide. 2) Final levels of activity were strictly dependent on the concentration of the nucleotides in a saturable manner. 3) Mg2+ increased the apparent affinity of either guanine nucleotide by 10-20-fold between 0.1 microM and 3 mM free Mg2+ in the presence of 2 mM EDTA but did not enhance the rate or maximal extent of activation. 4) The effects of Mg2+ were expressed through two independent classes of sites with affinities in the nanomolar and micromolar range. 5) A Mg2+ X guanine nucleotide complex was not the substrate for activation. The affinity of Mg2+ for nucleotides was determined as 6.25 mM GTP gamma S, 0.930 mM GTP, 0.156 mM p(NH)ppG. 6) Full activation by p(NH)ppG was completely reversible but activation by GTP gamma S was only partially reversible. These results suggest that: activation of adenylate cyclase in native membranes does not require Mg2+ or irreversible binding of the guanine nucleotide and there are two independent pathways for formation of active adenylate cyclase. A minimal mechanism for activation is discussed in light of current models.  相似文献   

20.
Mg2+ interacts with the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) in the presence of guanosine-5'-[gamma-thio]triphosphate (GTP-gamma S) to form a highly fluorescent complex from which nucleotide dissociates very slowly. The apparent Kd for interaction of G alpha X GTP gamma S with Mg2+ is approximately 5 nM, similar to the Km for G protein GTPase activity X G beta gamma increases the rate of dissociation of GTP gamma S from G alpha X GTP gamma S or G alpha X GTP gamma S X Mg2+ at low concentrations of Mg2+. When the concentration of Mg2+ exceeds 1 mM, G beta gamma dissociates from G beta gamma X G alpha X GTP gamma S X Mg2+. Compared with the dramatic effect of Mg2+ on binding of GTP gamma S to G alpha, the metal has relatively little effect on the binding of GDP. However, G beta gamma increases the affinity of G alpha for GDP by more than 100-fold. High concentrations of Mg2+ promote the dissociation of GDP from G beta gamma X G alpha X GDP, apparently without causing subunit dissociation. The steady-state rate of GTP hydrolysis is strictly correlated with the rate of dissociation of GDP from G alpha under all conditions examined. Thus, there are at least two sites for interaction of Mg2+ with G protein-nucleotide complexes. Furthermore, binding of G beta gamma and GTP gamma S to G alpha is negatively cooperative, while the binding interaction between G beta gamma and GDP is strongly positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号