首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production and secretion of hormones by the pituitary involve highly orchestrated intracellular transport and sorting steps. Hormone precursors are routed through a series of compartments before being packaged in secretory granules. These highly dynamic carriers play crucial roles in both prohormone processing and peptide exocytosis. We have employed the ACTH-secreting AtT-20 cell line to study the membrane sorting events that confer functionality (prohormone activation and regulated exocytosis) to these secretory carriers. The unique ability of granules to promote prohormone processing is attributed to their acidic interior. Using a novel avidin-targeted fluorescence ratio imaging technique, we have found that the trans-Golgi of live AtT-20 cells maintains a mildly acidic (approximately pH 6.2) interior. Budding of secretory granules causes the lumen to acidify to 相似文献   

2.
Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.  相似文献   

3.
Newly synthesized prohormones and their processing enzymes transit through the same compartments before being packaged into regulated secretory granules. Despite this coordinated intracellular transport, prohormone processing does not occur until late in the secretory pathway. In the mouse pituitary AtT-20 cell line, conversion of pro-opiomelanocortin (POMC) to mature adrenocorticotropic hormone involves the prohormone convertase PC1. The mechanism by which this proteolytic processing is restricted to late secretory compartments is unknown; PC1 activity could be regulated by compartment-specific activators/inhibitors, or through changes in the ionic milieu that influence its activity. By arresting transport in a semi-intact cell system, we have addressed whether metabolically labeled POMC trapped in early secretory compartments can be induced to undergo conversion if the ionic milieu in these compartments is experimentally manipulated. Prolonged incubation of labeled POMC trapped in the endoplasmic reticulum or Golgi/trans-Golgi network did not result in processing, thereby supporting the theory that processing is normally a post-Golgi/trans-Golgi network event. However, acidification of these compartments allowed effective processing of POMC to the intermediate and mature forms. The observed processing increased sharply at a pH below 6.0 and required millimolar calcium, regardless of the compartment in which labeled POMC resided. These conditions also resulted in the coordinate conversion of PC1 from the 84/87 kDa into the 74-kDa and 66-kDa forms. We propose that POMC processing is predominantly restricted to acidifying secretory granules, and that a change in pH within these granules is both necessary and sufficient to activate POMC processing.  相似文献   

4.
In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA-mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.  相似文献   

5.
Rat prothyrotropin-releasing hormone (pro-TRH) is endoproteolyzed within the regulated secretory pathway of neuroendocrine cells yielding five TRH peptides and seven to nine other unique peptides. Endoproteolysis is performed by two prohormone convertases, PC1 and PC2. Proteolysis of pro-TRH begins in the trans-Golgi network and forms two intermediates that are then differentially processed as they exit the Golgi and are packaged into immature secretory granules. We hypothesized that this initial endoproteolysis may be necessary for downstream sorting of pro-TRH-derived peptides as it occurs before Golgi exit and thus entry into the regulated secretory pathway. We now report that when pro-TRH is transiently expressed in GH4C1 cells, a neuroendocrine cell line lacking PC1, under pulse-chase conditions release is constitutive and composed of more immature processing intermediates. This is also observed by radioimmunoassay under steady-state conditions. When a mutant form of pro-TRH, which has the dibasic sites of initial processing mutated to glycines, is expressed in AtT20 cells, a neuroendocrine cell line endogenously expressing PC1, both steady-state and pulse-chase experiments revealed that peptides derived from this mutant precursor are secreted in a constitutive fashion. A constitutively secreted form of PC1 does not target pro-TRH peptides to the constitutive secretory pathway but results in sorting to the regulated secretory pathway. These results indicated that initial processing action of PC1 on pro-TRH in the trans-Golgi network, and not a cargo-receptor relationship, is important for the downstream sorting events that result in storage of pro-TRH-derived peptides in mature secretory granules.  相似文献   

6.
Little is known about the molecular mechanism of recycling of intracellular receptors and lipid raft-associated proteins. Here, we have investigated the recycling pathway and internalization mechanism of a transmembrane, lipid raft-associated intracellular prohormone sorting receptor, carboxypeptidase E (CPE). CPE is found in the trans-Golgi network (TGN) and secretory granules of (neuro)endocrine cells. An extracellular domain of the IL2 receptor alpha-subunit (Tac) fused to the transmembrane domain and cytoplasmic tail of CPE (Tac-CPE25) was used as a marker to track recycling of CPE. We show in (neuro)endocrine cells, that upon stimulated secretory granule exocytosis, raft-associated Tac-CPE25 was rapidly internalized from the plasma membrane in a clathrin-independent manner into early endosomes and then transported through the endocytic recycling compartment to the TGN. A yeast two-hybrid screen and in vitro binding assay identified the CPE cytoplasmic tail sequence S472ETLNF477 as an interactor with active small GTPase ADP-ribosylation factor (ARF) 6, but not ARF1. Expression of a dominant negative, inactive ARF6 mutant blocked this recycling. Mutation of residues S472 or E473 to A in the cytoplasmic tail of CPE obliterated its binding to ARF6, and internalization from the plasma membrane of Tac-CPE25 mutated at S472 or E473 was significantly reduced. Thus, CPE recycles back to the TGN by a novel mechanism requiring ARF6 interaction and activity.  相似文献   

7.
Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.  相似文献   

8.
Toxoplasma gondii dense granules are morphologically similar to dense matrix granules in specialized secretory cells, yet are secreted in a constitutive, calcium-independent fashion. We previously demonstrated that secretion of dense granule proteins in permeabilized parasites was augmented by the non-hydrolyzable GTP analogue guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) (Chaturvedi, S., Qi, H., Coleman, D. L., Hanson, P., Rodriguez, A., and Joiner, K. A. (1998) J. Biol. Chem. 274, 2424-2431). As now demonstrated by pharmacological and electron microscopic approaches, GTPgammaS enhanced release of dense granule proteins in the permeabilized cell system. To investigate the role of ADP-ribosylation factor 1 (ARF1) in this process, a cDNA encoding T. gondii ARF1 (TgARF1) was isolated. Endogenous and transgenic TgARF1 localized to the Golgi of T. gondii, but not to dense granules. An epitope-tagged mutant of TgARF1 predicted to be impaired in GTP hydrolysis (Q71L) partially dispersed the Golgi signal, with localization to scattered vesicles, whereas a mutant impaired in nucleotide binding (T31N) was cytosolic in location. Both mutants caused partial dispersion of a Golgi/trans-Golgi network marker. TgARF1 mutants inhibited delivery of the secretory reporter, Escherichia coli alkaline phosphatase, to dense granules, precluding an in vivo assessment of the role of TgARF1 in release of intact dense granules. To circumvent this limitation, recombinant TgARF1 was purified using two separate approaches, and used in the permeabilized cell assay. TgARF1 protein purified on a Cibacron G3 column and able to bind GTP stimulated dense granule secretion in the permeabilized cell secretion assay. These results are the first to show that ARF1 can augment release of constitutively secreted vesicles at the target membrane.  相似文献   

9.
Islet amyloid is a pathologic characteristic of the pancreas in type 2 diabetes comprised mainly of the beta-cell peptide islet amyloid polypeptide (IAPP; amylin). We used a pulse-chase approach to investigate the kinetics of processing and secretion of the IAPP precursor, proIAPP, in beta cells. By only 20 min after synthesis, a COOH-terminally processed proIAPP intermediate (approximately 6 kDa) was already present in beta cells. Formation of this NH2-terminally extended intermediate was not prevented by arresting secretory pathway transport at the trans-Golgi network (TGN) by either brefeldin A or temperature blockade, suggesting that this initial cleavage step occurs in the TGN before entry of (pro)IAPP into granules. Mature IAPP (approximately 4 kDa) was not detected until 60 min of chase, suggesting that NH2-terminal cleavage occurs in granules. Cells chased in low glucose without Ca2+ or with diazoxide, to block regulated release, secreted both proIAPP (approximately 8 kDa) and a partially processed form (approximately 6 kDa) via the constitutive secretory pathway. Stimulation of regulated secretion resulted in secretion primarily of mature IAPP as well as low levels of both unprocessed (approximately 8 kDa) and partially processed (approximately 6 kDa) proIAPP. We conclude that normal processing of proIAPP is a two-step process initiated by cleavage at its COOH terminus (likely by prohormone convertase 1/3 in the TGN) followed by cleavage at its NH2 terminus (by prohormone convertase 2 in granules) to form IAPP. Both proIAPP and its NH2-terminally extended intermediate appear to be normal secretory products of the beta cell that can be released via either the regulated or constitutive secretory pathways.  相似文献   

10.
ADP-ribosylation factor 1 (ARF1) mediates clathrin coat formation on PC12 immature secretory granules (ISGs). We have used two approaches to investigate whether ARF1 interacts directly with the clathrin adaptor protein, AP-1. Using an in vitro recruitment assay and co-immunoprecipitation, we could isolate an AP-1.ARF1 complex. Then we used a site-directed photocross-linking approach to determine the components that act downstream of ARF1 in clathrin coat formation on ISGs. Myristoylated ARF1, with a photolabile phenylalanine analogue incorporated into its putative effector domain (switch 1), showed a specific, GTP-dependent interaction with both the gamma- and beta-adaptin subunits of AP-1 on ISGs. These experiments provide evidence for a direct interaction of ARF1 with AP-1. On mature secretory granules myristoylated ARF1 does not bind, and hence clathrin coat formation cannot be initiated, supporting the hypothesis that molecules involved in coat recruitment are removed during ISG maturation.  相似文献   

11.
Prohormones are directed from the trans-Golgi network to secretory granules of the regulated secretory pathway. It has further been proposed that prohormone conversion by endoproteolysis may be necessary for subsequent retention of peptides in granules and to prevent their release by the so-called "constitutive-like" pathway. To address this directly, mutant human proinsulin (Arg/Gly(32):Lys/Thr(64)), which cannot be cleaved by conversion endoproteases, was expressed in primary rat islet cells by recombinant adenovirus. The handling of the mutant proinsulin was compared with that of wild-type human proinsulin. Infected islet cells were pulse labeled and both basal and stimulated secretion of radiolabeled products followed during a chase. Labeled products were quantified by high-performance liquid chromatography. As expected, the mutant proinsulin was not converted at any time. Basal (constitutive and constitutive-like) secretion was higher for the mutant proinsulin than for wild-type proinsulin/insulin, but amounted to <1% even during a prolonged (6-h) period of basal chase. There was no difference in stimulated (regulated) secretion of mutant and wild-type proinsulin/insulin at any time. Thus, in primary islet cells, unprocessed (mutant) proinsulin is sorted to the regulated pathway and then retained in secretory granules as efficiently as fully processed insulin.  相似文献   

12.
Clathrin provides an external scaffold to form small 50-100-nm transport vesicles. In contrast, formation of much larger dense-cored secretory granules is driven by selective aggregation of internal cargo at the trans-Golgi network; the only known role of clathrin in dense-cored secretory granules formation is to remove missorted proteins by small, coated vesicles during maturation of these spherical organelles. The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but these are cigar-shaped organelles up to 5 mum long. We hypothesized that a cytoplasmic coat might be required to make these very different structures, and we found that new and forming WPBs are extensively, sometimes completely, coated. Overexpression of an AP-180 truncation mutant that prevents clathrin coat formation or reduced AP-1 expression by small interfering RNA both block WPB formation. We propose that, in contrast to other secretory granules, cargo aggregation alone is not sufficient to form immature WPBs and that an external scaffold that contains AP-1 and clathrin is essential.  相似文献   

13.
A S Dittié  L Thomas  G Thomas    S A Tooze 《The EMBO journal》1997,16(16):4859-4870
The composition of secretory granules in neuroendocrine and endocrine cells is determined by two sorting events; the first in the trans-Golgi complex (TGN), the second in the immature secretory granule (ISG). Sorting from the ISG, which may be mediated by the AP-1 type adaptor complex and clathrin-coated vesicles, occurs during ISG maturation. Here we show that furin, a ubiquitously expressed, TGN/endosomal membrane endoprotease, is present in the regulated pathway of neuroendocrine cells where it is found in ISGs. By contrast, TGN38, a membrane protein that is also routed through the TGN/endosomal system does not enter ISGs. Furin, however, is excluded from mature secretory granules, suggesting that the endoprotease is retrieved from the clathrin-coated ISGs. Consistent with this, we show that the furin cytoplasmic domain interacts with AP-1, a component of the TGN/ISG-localized clathrin sorting machinery. Interaction between AP-1 and furin is dependent on phosphorylation of the enzyme's cytoplasmic domain by casein kinase II. Finally, in support of a requirement for the phosphorylation-dependent association of furin with AP-1, expression of furin mutants that mimic either the phosphorylated or unphosphorylated forms of the endoprotease in AtT-20 cells demonstrates that the integrity of the CKII sites is necessary for removal of furin from the regulated pathway.  相似文献   

14.
Insulin secretory granules (ISGs) are pivotal organelles of pancreatic ß-cells and represent a key participant to glucose homeostasis. Indeed, insulin is packed and processed within these vesicles before its release by exocytosis. It is therefore crucial to acquire qualitative and quantitative data on the ISG proteome, in order to increase our knowledge on ISG biogenesis, maturation and exocytosis. Despites efforts made in the past years, the coverage of the ISG proteome is still incomplete and comprises many potential protein contaminants most likely coming from suboptimal sample preparations. We developed here a 3-step gradient purification procedure combined to Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to further characterize the ISG protein content. Our results allowed to build three complementary proteomes containing 1/ proteins which are enriched in mature ISGs, 2/ proteins sharing multiple localizations including ISGs, and finally 3/ proteins sorted out from immature ISGs and/or co-purifying contaminants. As a proof of concept, the ProSAAS, a neuronal protein found in ISGs was further characterized and its granular localization proved. ProSAAS might represent a novel potential target allowing to better understand the defaults in insulin processing and secretion observed during type 2 diabetes progression. This article is part of a special issue entitled: Translational Proteomics.  相似文献   

15.
Immature secretory granules (ISGs) in endocrine and neuroendocrine cells have been shown by morphological techniques to be partially clathrin coated (Orci, L., M. Ravazzola, M. Amherdt, D. Lonvard, A. Perrelet. 1985a. Proc. Natl. Acad. Sci. USA. 82:5385-5389; Tooze, J., and S. A. Tooze. 1986. J. Cell Biol. 103:839-850). The function, and composition, of this clathrin coat has remained an enigma. Here we demonstrate using three independent techniques that immature secretory granules isolated from the rat neuroendocrine cell line PC12 have clathrin coat components associated with their membrane. To study the nature of the coat association we have developed an assay whereby the binding of the AP-1 subunit gamma-adaptin to ISGs was reconstituted by addition of rat or bovine brain cytosol. The amount of gamma-adaptin bound to the ISGs was ATP independent and was increased fourfold by the addition of GTPgammaS. The level of exogenous gamma-adaptin recruited to the ISG was similar to the level of gamma-adaptin present on the ISG after isolation. Addition of myristoylated ARF1 peptide stimulated binding. Reconstitution of the assay using AP-1 adaptor complex and recombinant ARF1 provided further evidence that ARF is involved in gamma-adaptin binding to ISGs; BFA inhibited this binding. Trypsin treatment and Trisstripping of the ISGs suggest that additional soluble and membrane-associated components are required for gamma-adaptin binding.  相似文献   

16.
Austin C  Boehm M  Tooze SA 《Biochemistry》2002,41(14):4669-4677
We have used a site-specific photo-cross-linking approach to identify direct interactions between clathrin adaptor protein (AP)1 complexes and small GTPases of the ADP-ribosylation factor (ARF) family and to explore the specificity of this interaction on immature secretory granule (ISG) membranes. ISG membranes are a well-characterized, highly enriched preparation of membranes that has previously been shown to have the membrane-associated factors for ARF1 recruitment that are not present on artificial liposomes. All three classes of ARF proteins could be recruited to ISG membranes, displaying differential requirements for GTPgammaS. We found that ARF1, ARF5, and ARF6 interacted directly with the beta1-adaptin subunit of AP-1 in the presence of GTPgammaS. Furthermore, we observed a direct interaction between the switch 1 region of ARF1 and the N-terminal trunk domains of gamma- and beta1-adaptin. In addition, both ARF1 and ARF6 but not ARF5 interacted directly with the beta3- and delta-adaptin subunits of AP-3. No interaction was observed between AP-2 and any of the ARF proteins. Our results delineate the specificity and provide evidence of a direct interaction between different ARF proteins and the AP complexes AP-1 and AP-3 on natural ISG membranes and show that residues in the switch 1 region of ARF proteins can selectively bind to the trunk domains of these complexes.  相似文献   

17.
We recently identified multivesicular bodies (MVBs) as prevacuolar compartments (PVCs) in the secretory and endocytic pathways to the lytic vacuole in tobacco (Nicotiana tabacum) BY-2 cells. Secretory carrier membrane proteins (SCAMPs) are post-Golgi, integral membrane proteins mediating endocytosis in animal cells. To define the endocytic pathway in plants, we cloned the rice (Oryza sativa) homolog of animal SCAMP1 and generated transgenic tobacco BY-2 cells expressing yellow fluorescent protein (YFP)-SCAMP1 or SCAMP1-YFP fusions. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that YFP-SCAMP1 fusions and native SCAMP1 localize to the plasma membrane and mobile structures in the cytoplasm of transgenic BY-2 cells. Drug treatments and confocal immunofluorescence studies demonstrated that the punctate cytosolic organelles labeled by YFP-SCAMP1 or SCAMP1 were distinct from the Golgi apparatus and PVCs. SCAMP1-labeled organelles may represent an early endosome because the internalized endocytic markers FM4-64 and AM4-64 reached these organelles before PVCs. In addition, wortmannin caused the redistribution of SCAMP1 from the early endosomes to PVCs, probably as a result of fusions between the two compartments. Immunogold electron microscopy with high-pressure frozen/freeze-substituted samples identified the SCAMP1-positive organelles as tubular-vesicular structures at the trans-Golgi with clathrin coats. These early endosomal compartments resemble the previously described partially coated reticulum and trans-Golgi network in plant cells.  相似文献   

18.
Islet cell autoantigen of 69 kDa (ICA69) is a cytosolic protein of still unknown function. Involvement of ICA69 in neurosecretion has been suggested by the impairment of acetylcholine release at neuromuscular junctions upon mutation of its homologue gene ric-19 in C. elegans. In this study, we have further investigated the localization of ICA69 in neurons and insulinoma INS-1 cells. ICA69 was enriched in the perinuclear region, whereas it did not co-localize with markers of synaptic vesicles/synaptic-like microvesicles. Confocal microscopy and subcellular fractionation in INS-1 cells showed co-localization of ICA69 with markers of the Golgi complex and, to a minor extent, with immature insulin-containing secretory granules. The association of ICA69 with these organelles was confirmed by immunoelectron microscopy. Virtually no ICA69 immunogold labeling was observed on secretory granules near the plasma membrane, suggesting that ICA69 dissociates from secretory granule membranes during their maturation. In silico sequence and structural analyses revealed that the N-terminal region of ICA69 is similar to the region of arfaptins that interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. ICA69 is therefore a novel arfaptin-related protein that is likely to play a role in membrane trafficking at the Golgi complex and immature secretory granules in neurosecretory cells.  相似文献   

19.
Many endocrine and neuroendocrine cells contain specialized secretory organelles called dense core secretory granules. These organelles are the repository of proteins and peptides that are secreted in a regulated manner when the cell receives a physiological stimulus. The targeting of proteins to these secretory granules is crucial for the generation of certain peptide hormones, including insulin and ACTH. Although previous work has demonstrated that proteins destined to a variety of cellular locations, including secretory granules, contain targeting sequences, no single consensus sequence for secretory granule-sorting signals has emerged. We have shown previously that alpha-helical domains in the C-terminal tail of the prohormone convertase PC1/3 play an important role in the ability of this region of the protein to direct secretory granule targeting (Jutras, I. Seidah, N. G., and Reudelhuber, T. L. (2000) J. Biol. Chem. 275, 40337-40343). In this study, we show that a variety of alpha-helical domains are capable of directing a heterologous secretory protein to granules. By testing a series of synthetic alpha-helices, we also demonstrate that the presence of charged (either positive or negative) amino acids spatially segregated from a hydrophobic patch in the alpha-helices of secretory proteins likely plays a critical role in the ability of these structures to direct secretory granule sorting.  相似文献   

20.
Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号