首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to analyze the genetic segregation of heading traits in wheat using recombinant inbred lines (RILs) of hexaploid wheat, derived from Triticum aestivum cv. Chinese Spring and T. spelta var. duhameliamum. The population was examined under controlled environmental conditions as well as in the field. This strategy differentiated the effect of three genetic factors (vernalization requirement, photoperiod sensitivity and narrow-sense earliness) and identified their interactions. Correlation analysis showed that photoperiod sensitivity and narrow-sense earliness are critical for heading time in the field. Single-marker analysis using 322 molecular markers segregating among RIL detected a total of 38 linked markers for each genetic factor and heading in the field. In interval analysis, two Vrn genes (Vrn-B1 and Vrn-D1) and Ppd-B1 were mapped on chromosomes 5B, 5D and 2B, respectively. It was noticed that Vrn-B1 on 5B from the spelt wheat conferred a strong-spring habit equivalent to the homologous Vrn-A1. Quantitative trait locus analysis also showed that Ppd-B1 was not detected under the short-day condition without vernalization treatment, and that there were two types of genes for photoperiod sensitivity, dependent on and independent of vernalization treatment.  相似文献   

2.
Barley (Hordeum vulgare L.) is potentially a new source of genes for wheat (Triticum aestivum L.) improvement. Wheat-barley chromosome recombinant lines provide a means for introgressing barley genes to wheat genome by chromosome engineering, and since these are expected to occur only rarely in special cytogenetic stocks, an efficient selection skill is necessary to identify them. To convert RFLP markers to barley allele-specific PCR markers useful for effective production of wheat-barley recombinant lines, 91 primer sets derived from RFLP clones which were previously mapped to the barley chromosomes were examined for PCR amplification using 'Chinese Spring' wheat, 'Betzes' barley and the wheat-barley chromosome addition lines. The polymorphisms were detected by an agarose gel electrophoresis of the PCR products without digestion with restriction enzymes. Out of 81 primer sets producing polymorphisms between the wheat and barley genomes, 26 amplified barley chromosome-specific DNAs which were confirmed to be located on the same chromosome as the RFLP markers by using the wheat-barley chromosome addition lines. These amplified DNAs represent barley allele-specific amplicons, which distinguish barley alleles from their wheat homoeologous counterparts. The present investigation revealed a higher probability for obtaining allele-specific amplicons from genomic DNA-derived RFLP markers than from cDNA-derived ones. The barley allele-specific amplicons developed in this study, namely, four for chromosome 2H, two for 3H, seven for 4H, eight for 5H, one for 6H and four for 7H, are suitable for identifying 'Chinese Spring' wheat- 'Betzes' barley recombinant chromosomes. However, one out of eight barley allele-specific amplicons on chromosome 5H did not detect a unique barley band in a 'New Golden' barley chromosome 5H addition line of 'Shinchunaga' wheat, indicating there may be a need to reconstruct allele-specific amplicons with different barley cultivars.  相似文献   

3.
Frost tolerance of ten Bulgarian winter wheat (Triticum aestivum L.) cultivars (Milena, Pobeda, Sadovo-1, Enola, Kristal, Laska, Svilena, Russalka, No301 and Lozen) and five foreign cultivars (Mironovskaya 808, Bezostaya-1, Rannaya-12, Skorospelka-35 and Chinese Spring) was studied in two experimental seasons following natural cold acclimation and in one experiment carried out in controlled acclimation conditions. Considerable intercultivar variability in plant survival was observed after freezing at ?21 °C following sufficient cold acclimation, or at ?18 °C following insufficient or controlled acclimation. In seven cultivars, the effects of chromosome 5A on frost tolerance were investigated in their F2 hybrids with chromosome 5A monosomic lines of cultivars with high, intermediate and low frost tolerance. The effects of chromosome 5A depended on the stress severity and the genetic background of the hybrids and varied even in cultivars of similar frost tolerance and vernalization requirements. Effects of other chromosomes besides 5A on frost tolerance were assumed. The analysis of six microsatellite loci located in the interval from centromere to Vrn-1 on of chromosomes 5AL, 5BL and 5DL showed that the major loci determining frost tolerance in Bulgarian winter wheats were Fr-A2 on chromosome 5AL, and, to a lesser extent, Fr-B1 on chromosome 5BL. A strong association of the 176 bp allele at locus wmc327 tightly linked to Fr-A2 with the elevated frost tolerance of cvs. Milena, Pobeda, Sadovo-1, Mironovskaya-808 and Bezostaya-1 was revealed. Relatively weaker association between frost tolerance and the presence of the 172 bp allele at locus Xgwm639 tightly linked to Fr-B1 was also observed.  相似文献   

4.
Barley has several important traits that might be used in the genetic improvement of wheat. For this report, we have produced wheat-barley recombinants involving barley chromosomes 4 (4H) and 7 (5H). Wheat-barley disomic addition lines were crossed with 'Chinese Spring' wheat carrying the phlb mutation to promote homoeologous pairing. Selection was performed using polymerase chain reaction (PCR) markers to identify lines with the barley chromosome in the ph1b background. These lines were self pollinated, and recombinants were identified using sequence-tagged-site (STS) primer sets that allowed differentiation between barley and wheat chromosomes. Several recombinant lines were isolated that involved different STS-PCR markers. Recombination was confirmed by allowing the lines to self pollinate and rescreening the progeny via STS-PCR. Progeny testing confirmed 9 recombinants involving barley chromosome 4 (4H) and 11 recombinants involving barley chromosome 7 (5H). Some recombinants were observed cytologically to eliminate the possibility of broken chromosomes. Since transmission of the recombinant chromosomes was lower than expected and since seed set was reduced in recombinant lines, the utility of producing recombinants with this method is uncertain.  相似文献   

5.
S W Zhan  S Mayama  Y Tosa 《Génome》2008,51(3):216-221
A screening of common wheat cultivars revealed that Triticum aestivum 'Thatcher' was resistant to Triticum isolates of Magnaporthe oryzae, whereas T. aestivum 'Chinese Spring' was susceptible. When F2 seedlings from a cross between 'Thatcher' and 'Chinese Spring' were inoculated with the Triticum isolates, resistant and susceptible seedlings segregated in a 15:1 ratio, suggesting that the resistance of 'Thatcher' was conditioned by two major genes. An inoculation test of 'Chinese Spring' substitution lines carrying individual chromosomes from 'Thatcher' indicated that these genes, designated Rmg2 and Rmg3, were located on chromosomes 7A and 6B.  相似文献   

6.
A collection of 19 wheat (Triticum aestivum) probes, detecting sequences in the seven homoeologous groups of chromosomes, were hybridized to DNA from the 'Kanota' series of oat monosomic lines (Avena byzantina) to investigate their use for identifying groups of homoeologous oat chromosomes. Three probes from homoeologous group 1 of wheat, psr161, psr162, and psr121, mapped among the set of oat chromosomes 1C, 14, and 17. One homoeologous group 6 probe, psr167, mapped to oat chromosomes 1C and 17. Two oat probes that had previously been shown to map to oat chromosomes 1C, 14, and 17 were then hybridized to DNA from the 'Chinese Spring' wheat ditelosomics. They localized to homoeologous group 1 wheat chromosomes, one to the short arm and one to the long arm. These results reveal that in hexaploid oat there is a group of three chromosomes that correspond at least in part to homoeologous group 1 of wheat. The remaining wheat probes identifying other wheat homoeologous sets did not detect a complete series of homoeologous chromosomes in oat. This was presumably due to the incomplete status of the 'Kanota' monosomic series, chromosomal rearrangement in Avena, weak hybridization signals owing to low probe-target sequence homology, and (or) detection of only two hybridization bands by the wheat probe.  相似文献   

7.
8.
Pot experiments with copper-treated soil and a control were performed in a greenhouse to determine QTLs for copper tolerance in wheat, using deletion, introgression and single chromosome recombinant lines. Genetic and physical mapping identified loci for copper tolerance on the long arm of chromosomes 5A and 5D, while loci with minor effects were found on the long and short arms of chromosome 5B. Tests on ‘Chinese Spring’–Aegilops tauschii introgression lines revealed a locus influencing copper tolerance on chromosome 3DS. QTLs for copper tolerance on chromosome 5A were mapped genetically and physically to exactly the same position as the gene for vernalization requirement (Vrn-A1). It is therefore suggested that Vrn-A1 may have a pleiotropic effect on copper tolerance may be due to the control of Cbf genes.  相似文献   

9.
J Li  D L Klindworth  F Shireen  X Cai  J Hu  S S Xu 《Génome》2006,49(12):1545-1554
The aneuploid stocks of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat (T. aestivum L.) have been developed mainly in 'Langdon' (LDN) and 'Chinese Spring' (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers might generate markers from target regions. TRAP-marker analysis verified the retention of at least 13 pairs of A- or B-genome chromosomes from LDN and 1 pair of D-genome chromosomes from CS in each of the LDN-DS lines. The chromosome-specific markers developed in this study provide an identity for each of the chromosomes, and they will facilitate molecular and genetic characterization of the individual chromosomes, including genetic mapping and gene identification.  相似文献   

10.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

11.
Three major gene loci determining the anthocyanin pigmentation of coleoptiles were mapped on the short arms of chromosomes 7A, 7B and 7D, respectively. All three genes map about 15 to 20 cM distal from the centromere and, therefore, it may be concluded that they are members of a homoeologous series and should be designated Rc-A1, Rc-B1 and Rc-D1, respectively. Further homoeologous loci exist in Triticum durum, Triticum tauschii, and most probably in Secale cereale and Hordeum vulgare. By analyzing a synthetic×cultivated wheat cross (ITMI mapping population) under different environmental conditions it was shown that the expression of the genes determining anthocyanin pigmentation of the coleoptiles varies. One additional locus was detected on chromosome 4BL. Beside the mapping data, results of a screening for red coleoptile color genes in 468 mainly European wheat varieties are presented. Received: 2 July 2001 / Accepted: 6 August 2001  相似文献   

12.
Genetic and physical characterization of chromosome 4DL in wheat.   总被引:8,自引:0,他引:8  
R Milla  J P Gustafson 《Génome》2001,44(5):883-892
The long arm of chromosome 4D in wheat (Triticum aestivum L.) has been shown in previous studies to harbor genes of agronomic importance. A major dominant gene conferring Aluminum (Al) tolerance (Alt2 in 'Chinese Spring' and AltBH in 'BH 1146'), and the Knal locus controlling the K+/Na+ discrimination in saline environments have been mapped to this chromosome arm. However, accurate information on the genetic and physical location of markers related to any of these genes is not available and would be useful for map-based cloning and marker-assisted plant breeding. In the present study, using a population of 91 recombinant inbred lines segregating for Al tolerance, we provide a more extensive genetic linkage map of the chromosome arm 4DL based on RFLP, SSR, and AFLP markers, delimiting the AltBH gene to a 5.9-cM interval between markers Xgdm125 and Xpsr914. In addition, utilizing a set of wheat deletion lines for chromosome arm 4DL, the AltBH gene was physically mapped to the distal region of the chromosome, between deletion breakpoints 0.70 and 0.86, where the kilobase/centimorgan ratio is assumed to be low, making the map-based cloning of the gene a more realistic goal. The polymorphism rates in chromosome arm 4DL for the different types of markers used were extremely low, as confirmed by the physical mapping of AFLPs. Finally, analysis of 1 Mb of contiguous sequence of Arabidopsis chromosome 5 flanking the gene homologous to the BCD1230 clone (a cosegregating marker in our population coding for a ribulose-5-phosphate-3-epimerase gene), revealed a previously identified region of stress-related and disease-resistance genes. This could explain the collinearity observed in comparative mapping studies among different species and the low level of polymorphism detected in the chromosome arm 4DL in hexaploid wheat.  相似文献   

13.
The genetic segregation of the heading trait was analyzed using a recombinant inbred line (RIL) of einkorn wheat, RILWA-1, derived from cultivated Triticum monococcum L., and wild-type T. boeoticum Boiss. The latency to heading was examined in 115 lines under controlled environmental conditions, as well as in the field, and the degrees of narrow-sense earliness and vernalization requirement were evaluated for quantitative trait locus (QTL) analysis. Single-marker analysis using 107 RFLP markers segregating in RILWA-1 detected 20 linking markers for heading factors. In all marker loci, the alleles for early heading were conferred by T. monococcum. In interval analysis of chromosome 5Am, two vernalization genes, Vrn-Am1 and Vrn-Am2, were precisely mapped to the Xcdo504-Xpsr426 interval on the central region of the long arm and to the Xwg114-Xwec87 interval on its distal region, respectively. Interval analysis also showed that two genes for narrow-sense earliness, designated Nse-3Am and Nse-5Am, were located on chromosome 3Am and 5Am, respectively. It was noticed that heading time in the field was determined mainly by Nse-3Am, suggesting that narrow-sense earliness is critical for heading in the field in einkorn wheat.  相似文献   

14.
H Zhang  S Nasuda  T R Endo 《Génome》2000,43(5):729-735
The satellite region on the short arm of chromosome 1B in wheat (Triticum aestivum L., 2n = 6x = 42) carries many agronomically important genes; i.e., genes conferring fungal disease resistance, seed storage proteins, and fertility restoration. To find molecular markers located on the satellite region, we applied the fluorescent AFLP (amplified fragment length polymorphism) technique to aneuploids and deletion stocks of the cultivar T. aestivum 'Chinese Spring'. Out of 6017 fragments amplified with 80 primer combinations in normal 'Chinese Spring', 24 were assigned to 1BS. Twelve of them clustered within a small region of the satellite known to be rich in RFLP (restriction fragment length polymorphism) markers. AFLPs in 1BS and in the whole genome were calculated between 'Chinese Spring' and T. spelta var. duhamelianum. The polymorphism rates in the satellite region (58.3%) and in the 1BS arm (45.8%) were much higher than the average rate for the whole genome (10.7%). Seven of the 12 AFLP markers in the satellite region were revealed to be specific to 'Chinese Spring' and could potentially be useful for genetic mapping in a segregation population of 'Chinese Spring' x T. spelta.  相似文献   

15.
Pestsova EG  Börner A  Röder MS 《Hereditas》2001,135(2-3):139-143
New wheat introgression lines were obtained which contain different segments of individual chromosomes of Aegilops tauschii in the Triticum aestivum cv. 'Chinese Spring' background. The introgression lines were developed to examine various subsets of alleles from the wild grass in the genetic background of common wheat. As starting point substitution lines of 'Chinese Spring' in which single chromosomes of the D genome had been replaced by homologous chromosomes of a synthetic wheat were used. Synthetic wheat had been obtained earlier from a cross between the tetraploid emmer (genomes AABB) and wild grass Aegilops tauschii (genome DD). The seven wheat chromosome substitution lines carrying different chromosomes of Ae. tauschii were crossed twice to T. aestivum cv. 'Chinese Spring' and 259 BC1-progeny plants were analysed. Phenotypic evaluation was carried out for different traits such as plant height, spikelet number, peduncle length, flowering time, spike length, tiller number, grain weight per ear, fertility and thousand kernel weight. Genotypic analysis was performed using a set of 65 microsatellite markers previously mapped on the chromosomes of the D genome of wheat. During this analysis recombinant lines carrying different segments of Ae. tauschii chromosomes were detected. Plants containing small introgressions of the alien genetic material were selfed to get homozygous lines and plants carrying large pieces of the donor chromosome were backcrossed again to get smaller introgressions. Further microsatellite analysis of selected BC1F2-progeny plants resulted in detection of a first set of 36 homozygous lines carrying different pieces of Ae. tauschii genome.  相似文献   

16.
J Xu  R L Conner  A Laroche 《Génome》1994,37(3):477-481
'Agrotana', a wheat-alien hybrid (2n = 56), is a potential source of resistance to common root rot, stem rust, wheat streak mosaic virus, and the wheat curl mite. However, the origin of 'Agrotana', reported to be durum wheat x Agropyron trichophorum (pubescent wheatgrass), is uncertain. The objective of this investigation was to determine the chromosome constitution of 'Agrotana' using C-banding and fluorescence in situ hybridization techniques. The F1 hybrid of 'Agrotana' x 'Chinese Spring' wheat showed 7 I + 21 II in 14.9% of the pollen mother cells, evidence of the presence of the A, B, and D genomes in 'Agrotana'. The hybrid had 16 heavily C-banded chromosomes, namely 4A, and 1-7B of wheat, and a translocation that probably involved wheat chromosomes 2A and 2D. In situ hybridization using biotinylated genomic DNA of Ag. trichophorum cv. Greenleaf blocked with CS DNA failed to identify the alien chromosomes in 'Agrotana', indicating that the alien chromosomes were not likely derived from pubescent wheatgrass. In situ hybridization using labelled wheat genomic DNA blocked with 'Agrotana' DNA revealed that 'Agrotana' had 40 wheat, 14 alien, and 2 (a pair) wheat-alien translocated chromosomes. There was no homology between wheat and the alien chromosomes or chromosome segments involved in the wheat-alien recombinant. Two of the seven pairs of alien chromosomes were homoeologous to each other. The ability to identify alien chromatin in wheat using labelled wheat DNA instead of labelled alien DNA will be particularly useful in chromosome engineering of wheat germplasms having alien chromatin of unknown origin.  相似文献   

17.
A molecular-marker linkage map of hexaploid wheat (Triticum aestivum L. em. Thell) provides a framework for integration with the classical genetic map and a record of the chromosomal rearrangements involved in the evolution of this crop species. We have constructed restriction fragment length polymorphism (RFLP) maps of the A-, B-, and D-genome chromosomes of homoeologous groups 4, 5, and 7 of wheat using 114 F(7) lines from a synthetic X cultivated wheat cross and clones from 10 DNA libraries. Chromosomal breakpoints for known ancestral reciprocal translocations involving these chromosomes and for a known pericentric inversion on chromosome 4A were localized by linkage and aneuploid analysis. Known genes mapped include the major vernalization genes Vrn1 and Vrn3 on chromosome arms 5AL and 5DL, the red-coleoptile gene Rc1 on 7AS, and presumptively the leaf-rust (Puccinia recondita f.sp. tritici) resistance gene Lr34 on 7DS and the kernel-hardness gene Ha on 5DS. RFLP markers previously obtained for powdery-mildew (Blumeria graminis f.sp. tritici) resistance genes Pm2 and Pm1 were localized on chromosome arms 5DS and 7AL.  相似文献   

18.
R N Sarma  L Fish  B S Gill  J W Snape 《Génome》2000,43(1):191-198
The wheat homoeologous Group 5 chromosomes were characterized physically in terms of rice linkage blocks using a deletion mapping approach. All three chromosomes, 5A, 5B, and 5D, were shown to have a similar structure, apart from the 4A-5A translocation on the distal end of chromosome arm 5AL. The physical mapping of rice markers on the deletion lines revealed that the whole of rice chromosome 9 is syntenous to a large block, proximal to the centromere, on the long arm. Likewise, a small segment of the distal end of the long arm showed conserved synteny with the distal one-third end of the long arm of rice chromosome 3. In between those conserved regions, there is a region on the long arm of the Group 5 chromosomes which shows broken synteny. The proximal part of the short arms of the Group 5 chromosomes showed conserved synteny with a segment of the short arm of rice chromosome 11 and the distal ends showed conserved synteny with a segment of rice chromosome 12. The physical locations of flowering time genes (Vrn and earliness per se) and the gene for grain hardness (Ha) on the Group 5 chromosomes were determined. These results indicate that comparative mapping using the deletion mapping approach is useful in the study of genome relationships, the physical location of genes, and can determine the appropriate gene cloning strategy.  相似文献   

19.
Differential responses in host-nematode pathotype interactions occur in wheat lines carrying different cereal cyst nematode resistance (Cre) genes. Cre1, located on chromosome 2B, confers resistance to most European nematodes and the sole Australian pathotype, while Cre3, present on chromosome 2D, is highly resistant to the Australian pathotype and susceptible to a number of European pathotypes. Genes encoding nucleotide binding site-leucine rich repeat (NBS-LRR) proteins that cosegregate with the Cre3 locus cross hybridize to homologues whose restriction fragment length polymorphism (RFLP) patterns distinguish near-isogenic Cre1 nematode-resistant wheat lines. Genetic mapping showed that the NBS-LRR gene members that distinguished the Cre1 near-isogenic lines were located on chromosome 2BL at a locus, designated Xcsl107, that cosegregates with the Cre1 locus. A haplotype of NBS-LRR genes from the Xcsl107 locus provides a diagnostic marker for the presence of Cre1 nematode resistance in a wide collection of wheat lines and segregating families. Genetic analysis of NBS-LRR haplotypes that cosegregate with Cre1 and Cre3 resistance, together with flanking cDNA markers and other markers from homoeologous group 2 chromosomes, revealed a conserved gene order that suggests Cre1 and Cre3 are homeoloci.  相似文献   

20.
A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号