首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
The Friend spleen focus-forming virus (SFFV) env gene encodes a glycoprotein with apparent Mr of 55,000 that binds to erythropoietin receptors (EpoR) to stimulate erythroblastosis. A retroviral vector that does not encode any Env glycoprotein was packaged into retroviral particles and was coinjected into mice in the presence of a nonpathogenic helper virus. Although most mice remained healthy, one mouse developed splenomegaly and polycythemia at 67 days; the virus from this mouse reproducibly caused the same symptoms in secondary recipients by 2 to 3 weeks postinfection. This disease, which was characterized by extramedullary erythropoietin-independent erythropoiesis in the spleens and livers, was also reproduced in long-term bone marrow cultures. Viruses from the diseased primary mouse and from secondary recipients converted an erythropoietin-dependent cell line (BaF3/EpoR) into factor-independent derivatives but had no effect on the interleukin-3-dependent parental BaF3 cells. Most of these factor-independent cell clones contained a major Env-related glycoprotein with an Mr of 60,000. During further in vivo passaging, a virus that encodes an Mr-55,000 glycoprotein became predominant. Sequence analysis indicated that the ultimate virus is a new SFFV that encodes a glycoprotein of 410 amino acids with the hallmark features of classical gp55s. Our results suggest that SFFV-related viruses can form in mice by recombination of retroviruses with genomic and helper virus sequences and that these novel viruses then evolve to become increasingly pathogenic.The independently isolated Friend and Rauscher erythroleukemia viruses (18, 48) are complexes of a replication competent murine leukemia virus (MuLV) and a replication-defective spleen focus-forming virus (SFFV) (39, 42, 47). The SFFVs encode Env glycoproteins (gp55) that are inefficiently processed to form larger cell surface derivatives (gp55p) (19). The gp55 binds to erythropoietin receptors (EpoR) to cause erythroblast proliferation and splenomegaly in susceptible mice. Evidence has suggested that the critical mitogenic interaction occurs exclusively on cell surfaces (7, 16).SFFVs are structurally closely related to mink cell focus-inducing viruses (MCFs) (2, 5, 10, 50), a class of replication-competent murine retroviruses that has a broad host range termed polytropic (15, 21). Although MCFs are not inherited as replication-competent intact proviruses, the mouse genome contains numerous dispersed polytropic env gene sequences (8, 17, 27). MCFs apparently readily form de novo by recombination when ecotropic host range MuLVs replicate in mice (14, 15, 26, 43). MCF env genes typically are hybrid recombinants that contain a 5′ polytropic-specific region and a 3′ ecotropic-specific portion (26). They encode a gPr90 Env glycoprotein that is cleaved by partial proteolysis to form the products gp70 surface (SU) glycoprotein plus p15E transmembrane (TM) protein (32, 39, 47). In addition, MCFs often differ from ecotropic MuLVs in their long terminal repeat (LTR) sequences (8, 20, 26, 28, 29, 45).Based on their sequences, SFFVs could have derived from MCFs by a 585-base deletion and by a single-base addition in the ecotropic-specific portion of the env gene (10). Evidence suggests that both the 585-bp deletion and the frameshift mutation probably contribute to SFFV pathogenesis (3, 49). Several pathogenic differences among SFFV strains have also been ascribed to amino acid sequence differences in the ecotropic-specific portion of the Env glycoproteins (9, 41).This report describes the origin and rapid stepwise evolution of a new SFFV. This new pathogenic virus initially formed in a mouse that had been injected with an ecotropic strain of MuLV in the presence of a retroviral vector that does not encode any Env glycoprotein. The mouse developed erythroleukemia, splenomegaly, and polycythemia after a long lag phase. At that time the spleen contained viruses with env genes that were able to activate EpoR. Serial passage of this initial virus isolate resulted in selection of a novel SFFV that encodes a gp55 glycoprotein of 410 amino acids. This experimental system provides a method for isolating new SFFVs and for mapping the stages in their genesis.  相似文献   

5.
Six genes, including UL32, have been implicated in the cleavage and packaging of herpesvirus DNA into preassembled capsids. We have isolated a UL32 insertion mutant which is capable of near-wild-type levels of viral DNA synthesis; however, the mutant virus is unable to cleave and package viral DNA, consistent with the phenotype of a previously isolated temperature-sensitive herpes simplex virus type 1 mutant, tsN20 (P. A. Schaffer, G. M. Aron, N. Biswal, and M. Benyesh-Melnick, Virology 52:57–71, 1973). A polyclonal antibody which recognizes UL32 was previously used by Chang et al. (Y. E. Chang, A. P. Poon, and B. Roizman, J. Virol. 70:3938–3946, 1996) to demonstrate that UL32 accumulates predominantly in the cytoplasm of infected cells. In this report, a functional epitope-tagged version of UL32 showed that while UL32 is predominantly cytoplasmic, some nuclear staining which colocalizes with the major DNA binding protein (ICP8, UL29) in replication compartments can be detected. We have also used a monoclonal antibody (5C) specific for the hexon form of major capsid protein VP5 to study the distribution of capsids during infection. In cells infected with wild-type KOS (6 and 8 h postinfection), 5C staining patterns indicate that capsids are present in nuclei within replication compartments. These results suggest that cleavage and packaging occur in replication compartments at least at 6 and 8 h postinfection. Cells infected with the UL32 mutant exhibit a hexon staining pattern which is more diffusely distributed throughout the nucleus and which is not restricted to replication compartments. We propose that UL32 may play a role in “bringing” preassembled capsids to the sites of DNA packaging and that the failure to localize to replication compartments may explain the cleavage/packaging defect exhibited by this mutant. These results suggest that the UL32 protein is required at a step distinct from those at which other cleavage and packaging proteins are required and may be involved in the correct localization of capsids within infected cells.During infection of cells with herpes simplex virus type 1 (HSV-1), the large concatemeric products of DNA replication are cleaved to unit length and packaged into preassembled capsids. Capsids are icosahedral structures composed of 150 hexons and 12 pentons. Three types of capsids (A, B, and C) can be isolated from infected cells by velocity centrifugation (20). C capsids contain the viral DNA genome; B capsids contain the scaffolding protein; and A capsids contain neither DNA nor the scaffolding protein. Pulse chase experiments with another alphaherpesvirus, equine herpesvirus 1, indicate that at least some B capsids can package DNA and mature into infectious virions, while A capsids cannot (46). By analogy with the bacteriophages, these results suggest that B capsids represent procapsids which are intermediates in the packaging process. However, a new intermediate in the assembly process has recently been identified (41, 62). These newly identified capsid forms observed in in vitro assembly extracts have the same protein content as B capsids but are more spherical; these capsids are unstable and adopt the more angular form characteristic of B capsids after prolonged incubation in vitro. These results suggest that the unstable spherical forms may represent the true procapsid intermediate (41, 62).In many bacteriophages, the procapsid contains at least three essential components: an icosahedrally arranged protein shell, an internal scaffold, and a dodecameric ring called the portal vertex through or around which the phage DNA is taken up (8, 11, 18). For HSV-1, the outer shell is composed of four proteins: the major capsid protein, VP5; a small protein bound to hexons, VP26; and a triplex structure made up of heterotrimers of VP19C and VP23 (reviewed in reference 56). VP24, VP21, and VP22a are found in the interior of the capsid and are encoded by overlapping genes UL26 and UL26.5; VP21 and VP22a are present in B but not A or C capsids and are considered to make up the internal scaffold (reviewed in reference 56). Although bacteriophages contain a portal vertex, no such structure has been observed in HSV-1 capsids. Whether the herpesviruses have a unique portal vertex through which viral DNA is taken up is unclear; it is possible that this type of unique vertex is only needed in viruses which have a tail. Capsids indistinguishable from those isolated from HSV-1-infected cells have been observed in extracts from insect cells infected with recombinant baculoviruses bearing HSV-1 capsid genes (42, 60). Therefore, it is clear that these proteins are sufficient for capsid assembly in vitro; however, it is not known whether capsids formed in vitro are competent for DNA uptake. It is possible that minor components of capsids play important roles in genome encapsidation.In addition to the capsid proteins, at least six genes are essential for the encapsidation of viral DNA: the UL6, UL15, UL25, UL28, UL32, and UL33 genes. Temperature-sensitive (ts) strains with mutations in these genes have similar phenotypes, in that viral DNA can be replicated but not cleaved and packaged (1, 2, 4, 6, 48, 51, 54, 55, 66). Strains with null mutations in the UL6, UL15, UL25, UL28, and UL33 genes have been isolated and characterized, thereby confirming the roles of these genes in cleavage and packaging (5, 27, 37, 45, 59, 68). Despite the identification of these required genes, the mechanism by which viral DNA is cleaved and packaged is not understood, nor has the role of any of the gene products been determined. The UL6 and UL25 proteins have been detected in A, B, and C capsids as well as in virions (3, 28, 37, 44); however, the precise role of these two proteins in capsids remains to be determined.A ts UL32 mutant, tsN20, defective in cleavage and packaging, has been reported previously (51). Because mutants with lesions resulting in temperature sensitivity are often prone to problems associated with incomplete penetrance at the nonpermissive temperature, we isolated a UL32 insertion mutant, hr64. Characterization of hr64 confirms that UL32 is essential for cleavage and packaging. Previous studies demonstrated that UL32 localizes to the cytoplasm of infected cells (13). We have used a functional epitope-tagged version of UL32 to confirm that in infected cells, this protein is mainly cytoplasmic, although some nuclear staining was observed.HSV-1 DNA replication occurs in globular nuclear domains termed “replication compartments” initially identified by ICP8 (UL29) staining patterns in an immunofluorescence assay (49). All seven replication proteins have now been localized within replication compartments (10, 24, 2931, 43) as has regulatory protein ICP4 (26, 50). Ward et al. have recently reported that at late times after infection (18 h), capsids accumulate in the nucleus in regions distinct from replication compartments (64). These authors suggest that these regions represent assembly stations in which DNA is packaged. We report herein, however, that at 6 and 8 h postinfection, capsids colocalize with ICP8 in replication compartments. This suggests that at these early times, cleavage and packaging occur within replication compartments. Furthermore, we report that in cells infected with the UL32 mutant virus, capsids are distributed throughout the nucleus, accumulating in regions outside the replication compartments. This suggests that UL32 may play a role in the efficient localization of capsids in infected cells.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Sindbis virus infection of cultured cells and of neurons in mouse brains leads to programmed cell death exhibiting the classical characteristics of apoptosis. Although the mechanism by which Sindbis virus activates the cell suicide program is not known, we demonstrate here that Sindbis virus activates caspases, a family of death-inducing proteases, resulting in cleavage of several cellular substrates. To study the role of caspases in virus-induced apoptosis, we determined the effects of specific caspase inhibitors on Sindbis virus-induced cell death. CrmA (a serpin from cowpox virus) and zVAD-FMK (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone) inhibited Sindbis virus-induced cell death, suggesting that cellular caspases facilitate apoptosis induced by Sindbis virus. Furthermore, CrmA significantly increased the rate of survival of infected mice. These inhibitors appear to protect cells by inhibiting the cellular death pathway rather than impairing virus replication or by inhibiting the nsP2 and capsid viral proteases. The specificity of CrmA indicates that the Sindbis virus-induced death pathway is similar to that induced by Fas or tumor necrosis factor alpha rather than being like the death pathway induced by DNA damage. Taken together, these data suggest a central role for caspases in Sindbis virus-induced apoptosis.Sindbis virus is an alphavirus of the Togaviridae family which causes encephalitis in mice and thus serves as a model for closely related human encephalitic viruses. Infection of a variety of cultured cell types with Sindbis virus triggers programmed cell death (33). The induction of apoptosis in neurons of mouse brains and spinal cords correlates with the neurovirulence of the virus strain and with mortality in mice, suggesting that induction of apoptosis may be a primary cause of death of young mice (34). In support of this hypothesis, overexpressed inhibitors of apoptosis, such as Bcl-2 and IAP, can protect cultured cells from Sindbis virus-induced apoptosis, and Bcl-2 efficiently reduces mortality in mice (17, 31, 32). These findings also raise the possibility that endogenous inhibitors of apoptosis inhibit Sindbis virus-induced cell death, leading to a persistent virus infection (33, 61). Encephalitis and/or a fatal stress response may be a consequence of neuronal apoptosis (21, 59). Alternatively, there may be multiple pathways that work independently to cause fatal disease.A crucial role for the caspase family of cysteine proteases in the execution phase of programmed cell death is supported by genetic (24, 52, 66), biochemical (29, 57), and physiological (25) evidence. A current model proposes a cascade of events by which caspases proteolytically activate other caspases (35, 39, 46). More recent evidence suggests that different death stimuli trigger the activation of a subset of upstream caspases that possess long prodomains at their N termini (3, 41, 62). These prodomains serve to target proteases to specific protein complexes, where the prodomains are removed by proteolysis to produce active proteases. These caspases proteolytically activate other downstream caspases (with shorter prodomains) that cleave key substrates to ultimately produce the characteristic apoptotic phenotype of cell shrinkage, membrane blebbing, chromatin condensation, oligonucleosomal DNA fragmentation, and cell death (42, 53). A growing list of proteolytic substrates of the caspases have been identified, including protein kinase C delta (18), the retinoblastoma tumor suppressor (56), fodrin (12, 38), lamins (30, 47), the nuclear immunophilin FKBP46 (1), Bcl-2 (7), and several autoantigens (5), and they all are cleaved after an aspartate residue (P1 position). The precise role of these cleavage events is not known, but they may either inactivate key cellular functions or produce cleavage products with pro-death activity. The cleavage product of Bcl-2 is potently proapoptotic (7), and cleavage of a novel protein designated DFF was recently shown to trigger DNA fragmentation during apoptosis (36). These proteolytic events also serve as biochemical markers of apoptosis. Furthermore, cell death can be inhibited with pseudosubstrate inhibitors of the caspases, such as the cowpox virus serpin CrmA (19, 48), and synthetic peptides such as zVAD-FMK (67). The key feature of these inhibitors is an aspartate at the P1 position, consistent with their specificity for caspases.A role for caspases in viral infections is suggested by the finding that baculovirus infection activates an apoptotic cysteine protease in insect cells that is inhibited by the virus-encoded caspase inhibitor p35 (2). Similar work with mutant adenoviruses has suggested that the adenovirus protein E1A activates caspase 3 (CPP32), generating cleaved products of poly(ADP-ribose) polymerase (PARP) (4). In addition, PARP cleavage is detected during infection of mouse neuroblastoma cells with Sindbis virus (60). To further study the role of these proteases in Sindbis virus-induced programmed cell death, we confirmed that Sindbis virus activates cellular caspases and demonstrated the participation of a subset of caspases in the execution of the apoptotic process.  相似文献   

17.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

18.
19.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号