首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor.  相似文献   

2.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   

3.
Preparations enriched in part-smooth (lacking ribosomes), part-rough (with ribosomes) transitional elements of the endoplasmic reticulum when incubated with ATP plus a cytosol fraction responded by the formation of blebbing profiles and approximately 60-nm vesicles. The 60-nm vesicles formed resembled closely transition vesicles in situ considered to function in the transfer of membrane materials between the endoplasmic reticulum and the Golgi apparatus. The transition elements following incubation with ATP and cytosol were resolved by preparative free-flow electrophoresis into fractions of differing electronegativity. The main fraction contained the larger vesicles of the transitional membrane elements, while a less electronegative minor shoulder fraction was enriched in the 60-nm vesicles. If the vesicles concentrated by preparative free-flow electrophoresis were from material previously radiolabeled with [3H]leucine and then added to Golgi apparatus immobilized to nitrocellulose, radioactivity was transferred to the Golgi apparatus membranes. The transfer was rapid (T1/2 of about 5 min), efficient (10-30% of the total radioactivity of the transition vesicle preparations was transferred to Golgi apparatus), and independent of added ATP but facilitated by cytosol. Transfer was specific and apparently unidirectional in that Golgi apparatus membranes were ineffective as donor membranes and endoplasmic reticulum vesicles were ineffective as recipient membranes. Using a heterologous system with transition vesicles from rat liver and Golgi apparatus isolated from guinea pig liver, coalescence of the small endoplasmic reticulum-derived vesicles with Golgi apparatus membranes was demonstrated using immunocytochemistry. Employed were polyclonal antibodies directed against the isolated rat transition vesicle preparations. When localized by immunogold procedures at the electron microscope level, regions of rat-derived vesicles were found fused with cisternae of guinea pig Golgi apparatus immobilized to nitrocellulose strips. Membrane transfer was demonstrated from experiments where transition vesicle membrane proteins were radioiodinated by the Bolton-Hunter procedure. Additionally, radiolabeled peptide bands not present initially in endoplasmic reticulum appeared following coalescence of the derived vesicles with Golgi apparatus. These bands, indicative of processing, required that both Golgi apparatus and transition vesicles be present and did not occur in incubated endoplasmic reticulum preparations or on nitrocellulose strips to which no Golgi apparatus were added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

5.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   

6.
Cholesterol loading induces a block in the exit of VSVG from the TGN   总被引:2,自引:1,他引:1  
Recent work from our laboratory demonstrated that increased cellular cholesterol content affects the structure of the Golgi apparatus. We have now investigated the functional consequences of the cholesterol-induced vesiculation of the Golgi apparatus and the role of actin for these changes. The results showed that cholesterol-induced vesiculation and dispersion of the Golgi apparatus is a reversible process and that reversal can be inhibited by cytochalasin D, an actin-disrupting reagent. Furthermore, electron microscopy revealed that jasplakinolide, which stabilizes actin filaments, prevented the dispersion, but not the vesiculation of the Golgi cisternae. Importantly, the different Golgi markers seemed to be separated even after vesiculation. To investigate whether transport through the different steps of the exocytic pathway was affected in cholesterol-treated cells, we visualized ER to plasma membrane transport by using ts045-VSVG-GFP. In COS-1 cells expressing ts045-VSVG-GFP increased cholesterol levels did not affect transport of VSVG into the vesiculated Golgi apparatus. However, increased levels of cholesterol resulted in retention of the nascent G protein in vesicles with the TGN-marker TGN46. Biotinylation of cell surface molecules to quantify arrival of VSVG at the plasma membrane confirmed that cholesterol treatment inhibited export of the VSVG protein. In conclusion, the data show that transport of VSVG into/through a vesiculated Golgi is feasible, but that cholesterol loading inhibits exit of VSVG from the vesicles containing TGN markers. Furthermore, the data illustrate the importance of actin filaments for Golgi structure.  相似文献   

7.
The expression and intracellular localization of the Tetrahymena homolog of 4-hydroxyphenylpyruvate dioxygenase (HPPD) were investigated in wild-type Tetrahymena thermophila strain B1868 VII and the mutant strains IIG8, defective in food vacuole formation, MS-1, blocked in secretion of lysosomal enzymes, and SB 281, defective in mucocyst maturation. Immunoelectron microscopy and confocal laser scanning microscopy demonstrated that Tetrahymena HPPD primarily localized to membranes of the endoplasmic reticulum. In addition, Tetrahymena HPPD was detected in association with membranes of the Golgi apparatus, and transport vesicles in exponentially growing wild-type and mutant strains. In starved cells, Tetrahymena HPPD localized exclusively to membranes of small vesicles. Since no de novo synthesis of Tetrahymena HPPD takes place in cells starved for more than 30 min, these results suggest that there is a flow of Tetrahymena HPPD from the endoplasmic reticulum to small vesicles, possibly via the Golgi apparatus, and that Tetrahymena HPPD contains a signal for vesicle membrane retrieval or retention.  相似文献   

8.
Vascular endothelial growth factor receptor 1 (VEGFR1) is an essential receptor tyrosine kinase that regulates mammalian vascular development and embryogenesis but its function is not well understood. Herein, we present evidence whereby endothelial VEGFR1 is largely resident within the Golgi apparatus but translocates to the plasma membrane via a calcium-regulated process. Primary human endothelial cells reveal differing VEGFR1 and VEGFR2 intracellular distribution and dynamics. The major proportion of the full-length VEGFR1 membrane protein was resident within the Golgi apparatus in primary endothelial cells. Whereas VEGFR2 displayed down-regulation in response to VEGF-A, VEGFR1 was not significantly affected arguing for a significant intracellular pool that was inaccessible to extracellular VEGF-A. This intracellular VEGFR1 pool showed significant co-distribution with key Golgi residents. Brefeldin A caused VEGFR1 Golgi fragmentation consistent with redistribution to the endoplasmic reticulum. Metabolic labeling experiments and microscopy using domain-specific VEGFR1 antibodies indicated that the mature processed VEGFR1 species and an integral membrane protein was resident within Golgi apparatus. Cytosolic calcium ions play a key role in VEGFR1 trafficking as treatment with either VEGF-A, histamine, thrombin, thapsigargin or A23187 ionophore caused VEGFR1 redistribution from the Golgi apparatus to small punctate vesicles and plasma membrane. We thus propose a model whereby the balance of VEGFR1 and VEGFR2 plasma membrane levels dictate either negative or positive endothelial signaling to influence vascular physiology.  相似文献   

9.
The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.  相似文献   

10.
Phospholipase D (PLD) is a phospholipid hydrolyzing enzyme whose activation has been implicated in mediating signal transduction pathways, cell growth, and membrane trafficking in mammalian cells. Several laboratories have demonstrated that small GTP-binding proteins including ADP-ribosylation factor (ARF) can stimulate PLD activity in vitro and an ARF-activated PLD activity has been found in Golgi membranes. Since ARF-1 has also been shown to enhance release of nascent secretory vesicles from the TGN of endocrine cells, we hypothesized that this reaction occurred via PLD activation. Using a permeabilized cell system derived from growth hormone and prolactin-secreting pituitary GH3 cells, we demonstrate that immunoaffinity-purified human PLD1 stimulated nascent secretory vesicle budding from the TGN approximately twofold. In contrast, a similarly purified but enzymatically inactive mutant form of PLD1, designated Lys898Arg, had no effect on vesicle budding when added to the permeabilized cells. The release of nascent secretory vesicles from the TGN was sensitive to 1% 1-butanol, a concentration that inhibited PLD-catalyzed formation of phosphatidic acid. Furthermore, ARF-1 stimulated endogenous PLD activity in Golgi membranes approximately threefold and this activation correlated with its enhancement of vesicle budding. Our results suggest that ARF regulation of PLD activity plays an important role in the release of nascent secretory vesicles from the TGN.  相似文献   

11.
Proton-translocating ATPases of the vacuolar class (V-ATPases) are found in a variety of animal cell compartments that participate in vesicular membrane transport, including clathrin-coated vesicles, endosomes, the Golgi apparatus, and lysosomes. The exact structural relationship that exists among the V-ATPases of these intracellular compartments is not currently known. In the present study, we have localized the V-ATPase by light and electron microscopy, using monoclonal antibodies that recognize the V-ATPase present in clathrin-coated vesicles. Localization using light microscopy and fluorescently labeled antibodies reveals that the V-ATPase is concentrated in the juxtanuclear region, where extensive colocalization with the Golgi marker wheat germ agglutinin is observed. The V-ATPase is also present in approximately 60% of endosomes and lysosomes fluorescently labeled using alpha 2-macroglobulin as a marker for the receptor-mediated endocytic pathway. Localization using transmission electron microscopy and colloidal gold-labeled antibodies reveals that the V-ATPase is present at and near the plasma membrane, alone or in association with clathrin. These results provide evidence that the V-ATPases of plasma membrane, endosomes, lysosomes, and the Golgi apparatus are immunologically related to the V-ATPase of clathrin-coated vesicles.  相似文献   

12.
A mammalian phospholipase D (PLD) activity that is stimulated by ADP-ribosylation factor (ARF) has been identified in Golgi-enriched membrane fractions. This activity is due to the PLD1 isoform and evidence from several laboratories indicates that PLD1 is important for the polymerization of vesicle coat proteins on membranes. When expressed in Chinese hamster ovary cells, PLD1 localized to dispersed small vesicles that overlapped with the location of the ERGIC53 protein, a marker for the endoplasmic reticulum (ER)-Golgi intermediate compartment. Cells having increased PLD1 expression had accelerated anterograde and retrograde transport between the ER and Golgi. Membranes from cells having elevated PLD1 activity bound more COPI, ARF, and ARF-GTPase activating protein. These membranes also produced more COPI vesicles than did membranes from control cells. It is likely that PLD1 participates in both positive and negative feedback regulation of the formation of COPI vesicles and is important for controlling the rate of this process.  相似文献   

13.
Calumenin belongs to a family of multiple EF-hand proteins that include reticulocalbin, ERC-55, and Cab45. Reticulocalbin and ERC-55 localize to the ER due to a C-terminal HDEL retrieval signal. Cab45 contains a HEEF C-terminal sequence and is localized to the Golgi apparatus. The murine homologue of calumenin is reported to be present in the ER due to a C-terminal HDEF retrieval signal. The human homologue differs from the murine at 7 amino acid positions but the HDEF signal is conserved. However, in the cultured human cell lines, HaCaT keratinocytes, normal and transformed MRC-5 fibroblasts, as well as in transfected COS-1 cells, human calumenin could be demonstrated in the ER as well as in the Golgi complex. Especially in MRC-5 cells, a certain heterogeneity was observed, with some of the cells having calumenin localized solely to the ER while in other cells calumenin could be demonstrated in the ER as well as in the Golgi complex. Immunoelectron microscopy of placental syncytiotrophoblast cells showed that a substantial fraction of calumenin is localized in close association with the ER membrane. In addition, the protein may be recovered from the medium of cultured cells in an endoglycosidase H-resistant form, suggesting that the glycosylated protein has been further modified in the Golgi apparatus and secreted to the medium.  相似文献   

14.
Phospholipase D (PLD) hydrolyses phosphatidylcholine to produce phosphatidic acid (PA) and choline. It has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type. In mast cells it plays an important role in signal transduction. The aim of the present study was to clarify the role of PLD2 in the secretory pathway. RBL-2H3 cells, a mast cell line, transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2 were used. Previous observations showed that the Golgi complex was well organized in CA cells, but was disorganized and dispersed in CI cells. Furthermore, in CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized. These previous observations demonstrated that PLD2 is important for maintaining the morphology and organization of the Golgi complex. To further understand the role of PLD2 in secretory and vesicular trafficking, the role of PLD2 in the secretory process was investigated. Incorporation of sialic acid was used to follow the synthesis and transport of glycoconjugates in the cell lines. The modified sialic acid was subsequently detected by labeling with a fluorophore or biotin to visualize the localization of the molecule after a pulse-chase for various times. Glycoconjugate trafficking was slower in the CI cells and labeled glycans took longer to reach the plasma membrane. Furthermore, in CI cells sialic acid glycans remained at the plasma membrane for longer periods of time compared to RBL-2H3 cells. These results suggest that PLD2 activity plays an important role in regulating glycoconjugate trafficking in mast cells.  相似文献   

15.
The beta-galactoside alpha 2,6-sialyltransferase has been localized to the trans cisternae of the Golgi apparatus and the trans Golgi network where it transfers sialic acid residues to terminal positions on N-linked oligosaccharides. It is a type II transmembrane protein possessing a 9-amino acid amino-terminal cytoplasmic tail, a 17-amino acid signal anchor domain, and a 35-amino acid stem region which tethers the large luminal catalytic domain to the membrane anchor. Previous work has demonstrated that the soluble sialytransferase catalytic domain is rapidly secreted from Chinese hamster ovary cells. These results suggest that the signals for Golgi apparatus localization do not reside in the catalytic domain of the enzyme but must reside in the cytoplasmic tail, signal anchor domain, and/or stem region. To determine which amino-terminal regions are required for Golgi apparatus localization, mutant sialyltransferase proteins were constructed by in vitro oligonucleotide-directed mutagenesis, expressed in Cos-1 cells, and localized by indirect immunofluorescence microscopy. Signal cleavage-sialyltransferase mutants which consist of only the stem and catalytic domain of the enzyme are not rapidly secreted but are retained intracellularly and predominantly localized to the Golgi apparatus. However, deletion of either the stem region or the cytoplasmic tail of the membrane-bound sialyltransferase does not alter its Golgi apparatus localization. In addition, sequential replacement of the amino acids of the sialyltransferase signal anchor domain with amino acids from the signal anchor domain of a plasma membrane protein, the influenza virus neuraminidase does not alter the Golgi apparatus localization of the sialyltransferase. These observations suggest that sequences in the signal anchor region and stem region allow the Golgi apparatus localization of the membrane-bound and soluble forms of the sialytransferase, respectively, and that both regions may contain Golgi apparatus localization signals.  相似文献   

16.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

17.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

18.
O -methyltransferase, and cinnnamyl alcohol dehydrogenase were localized to differentiating xylem. These enzymes are particularly abundant during secondary wall formation. Immunolabeling was observed on polysomes and in the cytosol of the cells during secondary wall formation, indicating that these enzymes are synthesized in the polysomes and released in the cytosol. The synthesis of monolignols might occur in the cytosol. Immunolabeling of anionic peroxidase was also localized to the differentiating xylem, particularly during secondary wall formation. The labeling, however, was observed in the rough endoplasmic reticulum (r-ER), the Golgi apparatus, and the plasma membrane, indicating that peroxidase is synthesized in the r-ER, transported to the Golgi apparatus, and localized on the plasma membrane by fusion of the Golgi vesicles to the membrane. Received 3 September 2001/ Accepted in revised form 16 October 2001  相似文献   

19.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   

20.
Profilin I was identified, by mass spectrometric sequencing and immunoblotting, as a component of purified Golgi cisternae from HepG2 cells. Binding to the Golgi was verified by indirect immunofluorescence in MT-1 cells showing that a fraction of profilin I colocalizes with TGN38, a marker of the trans-Golgi network (TGN). Studying the formation of constitutive exocytic vesicles at the TGN in a cell-free system demonstrated that cytosolic profilin I has no effect, while incubation of Golgi cisternae with a profilin I-specific antibody reduced vesicle formation by about 50%. Notably, the antibody displaces a fraction of the Golgi-bound dynamin II indicating that profilin I may indirectly promote vesicle formation by supporting the binding of dynamin II to the Golgi membrane. The impact of dynamin II on vesicle formation is demonstrated by incubating the Golgi with the proline-rich domain of dynamin II which concomitantly displaces dynamin II and inhibits vesicle formation. The data provide evidence that profilin I attaches to the Golgi apparatus and is required for the formation of constitutive transport vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号