首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alkaline elution technique was used to measure DNA strand breaks in rat testes after intraperitoneal injection of several chemicals known to cause heritable mutations in rodents. Methyl methanesulfonate (MMS), ethyl methanesulfonate, methylnitrosourea, and ethylnitrosourea all produced single strand breaks in rat testicular DNA. For both of these pairs of homologous alkylating agents the relative potency was methyl analog ethyl analog. Strand breaks produced by MMS appeared rapidly (within 2 h) in rat testicular DNA and were partially repaired within 24 h. Studies with low doses of MMS indicate that the assay has the sensitivity to detect DNA strand breaks in the testis after a dose of only 5 mg/kg. Variability in DNA elution profiles for individual control animals and for individual animals given identical doses of MMS was small. In contrast to the results with known mutagens, intraperitoneal injection of nonmutagens such as dimethyl sulfoxide, phenol, and Triton X-15, did not produce strand breaks in testicular DNA.These data indicate that this assay detects DNA strand breaks in the rat testis. The results of several heritable mutagens and nonmutagens are qualitatively predictive of mutagenic activity in the testis.  相似文献   

2.
《Free radical research》2013,47(6):381-389
DNA damage in X-irradiated CHO cells was measured by alkaline filter elution and compared to fluorometric analysis of DNA unwinding (FADU). The FADU method proved to be as sensitive as the alkaline filter elution technique in detecting X-ray induced DNA breaks. Strand break induction was also measured after treatment with four radical generating chemicals (hydrogen peroxide, bleomycin, mitomycin C and methyl viologen) using the FADU technique.  相似文献   

3.
DNA damage in X-irradiated CHO cells was measured by alkaline filter elution and compared to fluorometric analysis of DNA unwinding (FADU). The FADU method proved to be as sensitive as the alkaline filter elution technique in detecting X-ray induced DNA breaks. Strand break induction was also measured after treatment with four radical generating chemicals (hydrogen peroxide, bleomycin, mitomycin C and methyl viologen) using the FADU technique.  相似文献   

4.
B Lambert  Y Chen  S M He  M Sten 《Mutation research》1985,146(3):301-303
Human leucocytes were incubated in the presence of vinyl acetate or acetaldehyde (10-20 mM) for 4 h at 37 degrees C in vitro. DNA damage was analysed by alkaline elution. None of the compounds induced a detectable increase in the frequency of DNA strand breaks. Cells exposed to 5 Gy of X-ray immediately after treatment and before alkaline elution showed a clear, dose-dependent retardation of the elution rate in comparison with X-irradiated control cells. These results demonstrate that both vinyl acetate and acetaldehyde induce DNA cross-links in human cells.  相似文献   

5.
The effect of intercalating agents on mammalian DNA in vivo was examined by the technique of alkaline elution. Adriamycin and ellipticine were found to produce large numbers of single-strand breaks. These breaks appeared to be intimately associated with protein to the extent that enzymatic deproteinization of the DNA was necessary to reveal the breaks. The frequency of breaks and cross-links increased with concentration and time of exposure to the drugs. These data suggest that DNA single-strand scission may be a feature common to intercalators. The association with a cellular protein is previously undescribed and suggests possible mechanisms for the strand scission.  相似文献   

6.
The capacity of nitropyrenes to cause DNA damage in primary mouse hepatocytes (C57BL/6N mice) and rat H4-II-E hepatoma cells was studied by estimating single-strand breaks using the alkaline elution technique. 1-Nitropyrene (10-200 microM) caused clear dose-dependent increases in DNA strand breaks in both cell types, whereas no increase in DNA strand breaks was observed in hepatocytes treated with 1.3-, 1,6-, 1,8-dinitropyrene, 1,3,6-trinitropyrene and 1,3,6,8-tetranitropyrene under standard assay conditions (5-20 microM 30-min incubation). However, 1,8-dinitropyrene (1,8-DNP) caused dose-dependent increases in DNA strand breaks when incubated with the H4-II-E cells for 48 h, while no single-strand breaks were observed following treatment with 1,6-dinitropyrene (1,6-DNP) under the same conditions. Neither 1,6-DNP nor 1,8-DNAP induced DNA crosslinks in the H4-II-E cells. These data indicate that substrate specificity exists in the metabolic activation of nitropyrenes in murine liver.  相似文献   

7.
Skin fibroblasts from normal human subjects were exposed in vitro to long-wave ultraviolet radiation (UVA, 320–400 nm) alone, or in combination with 8-methoxypsoralen (8-MOP). DNA damage was analysed with the alkaline elution technique before and after post-treatment incubation of the cells at 37°C for various times.Cells treated with UVA at 1.1 J/cm2 showed an increased DNA elution rate, which returned to the normal level within 30 min of post-treatment incubation. In cells treated with PUVA (8-MOP at 20 μg/ml plus UVA at 0.04 J/cm2), the alkaline elution rate was not different from untreated control cells, either before or after post-treatment incubation for times up to 7 days.When the PUVA treatment was followed first by a washing, to remove any unbound 8-MOP, and then by UVA (PUVA + UVA) at 1.1 J/cm2, the alkaline elution rate decreased below the control level. During the post-treatment incubation of the PUVA + UVA-treated cells there was a gradual increase of the alkaline elution rate to a level significantly above that in control cells. This increase was observed after 30 min. It reached a miaximum after 24 h and remained after 7 days of post-treatment incubation. Cells from a patient with xeroderma pigmentosum of complementation group A, which were given the same PUVA + UVA treatment, did not show any change in the alkaline elution rate during the post-treatment incubation.If, as seems likely, an increased alkaline elution rate indicates an increase of DNA breaks, and a decreased alkaline elution rate indicates the sealing of breaks and/or the formation of cross-links, the results would suggest the following: (1) UVA irradiation in itself is capable of inducing DNA breaks, which are rapidly sealed during post-treatment incubation; (2) PUVA treatment induces mono-adducts, some of which appear to remain in the DNA for at least 7 days of post-treatment incubation and can be activated to form DNA cross-links by a second dose of UVA; (3) DNA cross-links induced by PUVA + UVA can be recognized by a repair process that involves the formation of DNA breaks. This process is not observed in xeroderma pigmentosum cells of group A.  相似文献   

8.
The effects of nitracrine (1-nitro-9-(3,3-N,N-dimethylaminopropylamino)acridine on DNA of cultured HeLa cells were studied. DNA strand breakage and interstrand cross-linking as well as DNA-protein cross-linking were measured by means of an alkaline elution technique and were compared with the cytotoxic effect of the drug. Interstrand cross-links were not detectable in the concentration range that inhibited cell growth up to 99%. DNA single-strand breaks were found when cells were treated with highly cytotoxic doses of the drug. DNA breakage was not reparable and exhibited a tendency to increase during incubation after drug removal. The only chromatin lesion induced by sublethal doses of nitracrine were DNA-protein cross-links which persisted for 24 h after drug treatment. It is concluded that DNA breaks represent degraded DNA from dying cells, whereas DNA-protein cross-links are specific cellular lesions, which may be responsible for the cell-killing effect of nitracrine.  相似文献   

9.
This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. 137Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methane sulfonate, ethyl methane sulfonate, ethyl nitrosurea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency.This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.Abbreviations DBCP dibromochlorpropane - DSB(s) DNA double-strand break(s) - EDB ethylene dibromide - EMS ethyl methane sulfonate - ENU ethyl nitrosurea - MC mitomycin C - MMS methyl methane sulfonate - SDS sodium dodecyl sulfate - SSB (s) DNA single-strand break(s) - TEM triethylene melamine - UDS unscheduled DNA synthesis  相似文献   

10.
HgCl2 is extremely cytotoxic to Chinese hamster ovary (CHO) cells in culture since a 1-h exposure to a 75- microM concentration of this compound reduced cell plating efficiency to 0 and cell growth was completely inhibited at 7.5 microM . The level of HgCl2 toxicity depended upon the culture incubation medium and has previously been shown to be inversely proportional to the extracellular concentration of metal chelating amino acids such as cysteine. Thus, HgCl2 toxicity in a minimal salts/glucose maintenance medium was about 10-fold greater than the toxicity in McCoy's culture medium. The HgCl2 toxicity in the latter medium was 3-fold greater than that in alpha-MEM which contains more of the metal chelating amino acids. When cells were exposed to HgCl2 there was a rapid and pronounced induction of single strand breaks in the DNA at time intervals and concentrations that paralleled the cellular toxicity. The DNA damage was shown to be true single strand breaks and not alkaline sensitive sites or double strand breaks by a variety of techniques. Consistent with the toxicity of HgCl2, the DNA damage under an equivalent exposure situation was more pronounced in the salts/glucose than in the McCoy's medium and more striking in the latter medium than in alpha-MEM. Most of the single strand breaks occurred within 1 h of exposure to the metal. We believe that the DNA damage caused by HgCl2 leads to cell death because the DNA single strand breaks are not readily repaired. DNA repair activity measured by CsCl density gradient techniques was elevated above the untreated levels at HgCl2 concentrations that produced little measurable binding of the metal to DNA or few single strand breaks assessed by the alkaline elution procedure. DNA repair activity decreased at HgCl2 concentrations that produced measurable DNA binding and single strand breaks. These irreversible interactions of HgCl2 with DNA may be responsible for its cytotoxic action in cells.  相似文献   

11.
Synthetic eumelanin prepared by autooxidation of D,L-DOPA causes DNA strand breaks, as determined by alkaline elution after cell lysis with detergent and proteolysis, in B16CL4 mouse melanoma cells. The melanin is toxic to the cells in the range of doses that causes strand breaks. When the melanin was incubated with the cells at 37 degrees C in tissue culture medium, it was maximally effective after 15 to 20 min at causing strand breaks in the DNA. The extent of damage is concentration dependent, but the effect plateaus at 1 mg/ml. The nature of the interaction of the cellular DNA with melanin is consistent with strand breaks, not DNA-DNA crosslinks. The strand break damage is repaired, even in the continued presence of melanin, but repair is more rapid if the cells are washed and the melanin is removed. The form of the melanin is important for obtaining the effect. Sonication for 3 min abrogates the effect to a considerable extent, and repeated cycles of sonication can completely destroy the activity. Lost activity returns slowly with storage at 4 degrees C. Melanin is more effective at damaging DNA in a protein-free medium. It is also DNA-damaging at 4 degrees C, but less so than at 37 degrees C. Preliminary studies indicate that the strand breaks caused by melanin are additive with those caused by ionizing radiation. The extent of DNA strand breaks and alkali-labile sites caused by several other melanins was also determined. Some melanins did not cause frank strand breaks, but were active in causing alkali-labile sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The induction of DNA damage in cells heated at hyperthermic (43-48 degrees C) temperatures was determined by alkaline filter elution and alkaline sucrose gradient-sedimentation analysis of cell DNA denatured at pH 13.0. A class of DNA lesion which converted to strand breaks during denaturation of DNA at pH 13.0 was produced randomly throughout the cell DNA at temperatures as low as 43 degrees C. Induction of this lesion occurred with a T0 of 90 and 10 min at 45 and 48 degrees C, respectively. We estimate that these pH 13.0-detectable DNA lesions are produced in the cell DNA with a frequency of approximately 75 and 660 per min of heating at 45 and 48 degrees C, respectively. Since the lesions were quantitatively converted to DNA strand breaks at pH 13.0 with a half-time of 30 min, or less, we suggest that these pH 13.0-detectable DNA lesions are heat-induced, abasic DNA sites. The induction of these lesions does not appear to be directly involved in the initial heat-induced inhibition of DNA synthesis. The presence of these lesions cannot be excluded as an explanation for the long-term inhibition of replicon initiated in heated cells.  相似文献   

13.
The carcinogenic activity of crystalline NiS has been attributed to phagocytosis and intracellular dissolution of the particles to yield Ni2+ which is thought to enter the nucleus and damage DNA. In this study the extent and type of DNA damage in Chinese hamster ovary CHO cells treated with various nickel compounds was assessed by alkaline elution. Both insoluble (crystalline NiS) and soluble (NiCl2) nickel compounds induced single strand breaks and DNA protein cross-links. The single strand breaks were repaired relatively quickly but the DNA-protein cross-links were present and still accumulating 24 h after exposure to nickel. Single strand breakage occurred at both non-cytotoxic and cytotoxic concentrations of nickel, however, DNA-protein cross-linking was absent when cells were exposed to toxic nickel levels. The concentration of nickel that induced DNA-protein cross-linking correlated with those metal concentrations that reversibly inhibited cellular replication.  相似文献   

14.
K Ueda  T Komano 《Nucleic acids research》1984,12(17):6673-6683
Mitomycin C reduced with sodium borohydride induced the DNA damage at deoxyguanosines preferentially in dinucleotide sequence G-T. The DNA damage produced strand breaks when subsequently heated. The DNA damage scarcely occurred when the end-labeled DNA was preincubated with ethidium bromide or actinomycin D before the addition of mitomycin C and the reducing agent. Fully reduced mitomycin C did not induce the DNA damage. The mitomycin C-inducing DNA damage seems to require the intercalation of the partially reduced mitomycin C of short life time, probably semiquinone radical, between DNA base pairs. The inhibitory effects of sodium chloride and radical scavengers suggested that the requirement of the covalent bond formation of mitomycin C to DNA and the involvement of oxygen radicals in the DNA damage. 7-N-(p-hydroxyphenyl)mitomycin C, which is reported to show a higher antitumor activity and a lower toxicity than mitomycin C, was readily reduced with dithiothreitol and induced the sequence-specific DNA damage, whereas mitomycin C was not.  相似文献   

15.
The repair of DNA alkylation damage in human cells is poorly understood. We have adapted the alkaline elution technique for use with human peripheral blood lymphocytes in culture. We have also established conditions necessary for short-term culture of human lymphocytes. Lymphocyte growth which can be maintained for up to 30 days is dependent upon irradiated TK6 feeder cells and T-cell growth factor (crude TCGF). The amount of damage induced by a given concentration of methyl methane-sulfonate (MMS) is dependent upon cell number per ml of growth medium. The DNA damage measured, in lymphocytes, by alkaline elution is a composite of single strand breaks and alkali-labile lesions. Repair of this damage after appropriate recovery periods is also detectable. The irradiated feeder TK6 cells do not contribute to the number of strand breaks detected or the amount of recovery after treatment. This method offers a quick and reproducible means of detecting DNA damage and repair in human T-lymphocytes.  相似文献   

16.
The ability of methyl methanesulfonate (MMS) to induce DNA breakage in spermiogenic stages of the mouse was studied using an alkaline elution technique. At daily intervals over a 3-week period following i.p. injection of 50 mg MMS/kg, mature spermatozoa were recovered from treated (3H-labeled) and control (14C-labeled) animals, lysed together on polycarbonate filters, and eluted with a high pH (12.2) buffer. Elution of germ-cell DNA from MMS-treated animals was found to increase in stages in which genetic damage from MMS is greatest. In general, the pattern of DNA elution from treated, spermiogenic stages paralleled the pattern of sensitivity to dominant lethals, specific-locus mutations and heritable translocations found by other investigators. It also paralleled the pattern of sperm-head methylation and protamine methylation measured in an earlier study (Sega and Owens, 1983). At 9 days post treatment (sperm sampled were in mid-to late-spermatid stages at the time of MMS exposure) the elution of sperm DNA did not change significantly over a pH range of 11.6-12.8, suggesting that, at the time of assay, DNA breaks were already present in the sperm. Because of the parallelism found between increased sperm DNA elution and increased genetic damage after mutagen treatment, alkaline elution may prove useful in monitoring potential genetic damage in human sperm.  相似文献   

17.
18.
DNA strand breaks induced in human CCRF-CEM cells by electrophilic chemicals (carcinogens/mutagens) can be readily quantitated via a facile alkaline unwinding assay. This procedure estimates the number of chemically induced DNA strand breaks on the basis of the percentage DNA converted from double-stranded to single-stranded form during an exposure to the alkaline unwinding conditions. The assay is based on the assumption that each strand break serves as a strand unwinding point during the alkaline denaturation. The extent of strand separation can be standardized with respect to the initial level of induced strand breaks by the use of X-rays, which produce known levels of DNA strand breaks per rad in mammalian cells. Subsequent to the alkaline exposure, the single- and double-stranded DNA were separated by use of thermostated hydroxylapatite columns (60 degrees C), and the DNA was quantitated via a fluorescence assay (Hoechst 33258 compound). A correlation was shown between mammalian DNA strand-breaking potential (as measured in this procedure) and the propensity of these chemicals to revert Salmonella typhimurium TA100.  相似文献   

19.
Summary Treatment of growing cultures of Mycobacterium smegmatis with alkylating agents (methyl methaneusulphonate, ethyl methanesulphonate, nitrogen mustard, or mitomycin C) or with ultraviolet light resulted in enhanced specific activities of a DNA polymerase and of an ATP-dependent deoxyribonuclease. Similar results had previously been obtained with hydroxyurea and with iron limitation. The three of these treatments which were tested (methyl methane-sulphonate, mitomycin C and hydroxyurea) produced strand breaks or alkali-labile regions in the DNA of this organism. The increased enzyme activities could be prevented by simultaneous treatment with inhibitors of protein synthesis.In contrast, treatment of the cultures with intercalating agents (ethidium bromide, acridine orange, or proflavine), 5-fluorouracil, caffeine, or nalidixic acid, inhibited DNA synthesis without increasing the enzyme activities. These treatments did not produce strand breaks in the DNA of this organism.The results support the hypothesis that, in M. smegmatis, damage to DNA induces increased synthesis of enzymes associated with DNA repair.  相似文献   

20.
Gamma-ray induction of DNA strand breaks and their repair was analysed in the diploid yeast strain D7 (Saccharomyces cerevisiae) by means of the alkaline step elution technique. A dose-dependent increase of DNA strand breakage was observed in the dose range 25-2000 Gy corresponding to 100 and 0.01 per cent survival. When, after exposure to gamma-irradiation, the cells were incubated for 2 h in liquid growth medium, the elution profiles reached the pattern of unirradiated controls, thus indicating the restoration of cellular DNA due to repair. The alkaline step elution analysis is found to be a useful and reproducible technique for studying the induction of DNA strand breaks and repair in yeast. In comparison with other current methods, such as alkaline sucrose gradients and DNA unwinding, this method appears to be more rapid, versatile and easier to handle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号