首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of all 11 variable opacity (Opa) proteins encoded by Neisseria gonorrhoeae MS11 to interact directly with the five CD66 antigens was determined. Transfected HeLa cell lines expressing individual CD66 antigens were infected with recombinant N. gonorrhoeae and Escherichia coli strains expressing defined Opas. Based upon the ability of these bacteria to bind and invade and to isolate specifically CD66 antigens from detergent-soluble extracts of the corresponding cell lines, distinct specificity groups of Opa interaction with CD66 were seen. Defining these specificity groups allowed us to assign a specific function for CD66a in the Opa-mediated interaction of gonococci with two different target cell types, which are both known to co-express multiple CD66 antigens. The competence of individual Opas to interact with CD66a was strictly correlated with their ability to induce an oxidative response by polymorphonuclear neutrophils. The same Opa specificity was observed for the level of gonococcal binding to primary endothelial cells after stimulation with TNFα, which was shown to increase the expression of CD66a rather than CD66e. As CD66e alone is expressed on other target tissues of gonococcal pathogenicity, Opa variation probably contributes to the cell tropism displayed by gonococci.  相似文献   

2.
Using COS (African green monkey kidney) cells transfected with cDNAs encoding human cell surface molecules, we have identified human cellular receptors for meningococcal virulence-associated Opa proteins, which are expressed by the majority of disease and carrier isolates. These receptors belong to the immunoglobulin superfamily of adhesion molecules and are expressed on epithelial, endothelial and phagocytic cells. Using soluble chimeric receptor molecules, we have demonstrated that meningococcal Opa proteins bind to the N-terminal domain of biliary glycoproteins (classified as BGP or CD66a) that belong to the CEA (CD66) family. Moreover, the Opa proteins of the related pathogen Neisseria gonorrhoeae , responsible for urogenital infections, also interact with this receptor, making CD66a a common target for pathogenic neisseriae. Over 95% of Opa-expressing clinical and mucosal isolates of meningococci and gonococci were shown to bind to the CD66 N-domain, demonstrating the presence of a conserved receptor-binding function in the majority of neisserial Opa proteins.  相似文献   

3.
Phagocytosis of Opa+ Neisseria gonorrhoeae (gonococcus, GC) by neutrophils is in part dependent on the interaction of Opa proteins with CGM1a (CEACAM3/CD66d) antigens, a neutrophil-specific receptor. However, the signaling pathways leading to phagocytosis have not been characterized. Here we show that interaction of OpaI bacteria with neutrophils or CGM1a-transfected DT40 cells induces calcium flux, which correlates with phagocytosis of bacteria. We identified an immunoreceptor tyrosine-based activation motif (ITAM) in CGM1a, and showed that the ability of CGM1a to transduce signals and mediate phagocytosis was abolished by mutation of the ITAM tyrosines. We also demonstrated that CGM1a-ITAM-mediated bacterial phagocytosis is dependent on Syk and phospholipase C activity in DT40 cells. Unexpectedly, the activation of the CGM1a-ITAM phagocytic pathway by Opa+ GC results in induction of cell death.  相似文献   

4.
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1- (CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To define the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, efficient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identified within the Opa adhesiotopes on the N-domain. These studies define the molecular basis that directs the Opa specificity for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups.  相似文献   

5.
Fc receptor-mediated phagocytosis requires CDC42 and Rac1.   总被引:17,自引:0,他引:17       下载免费PDF全文
At the surface of phagocytes, antibody-opsonized particles are recognized by surface receptors for the Fc portion of immunoglobulins (FcRs) that mediate their capture by an actin-driven process called phagocytosis which is poorly defined. We have analyzed the function of the Rho proteins Rac1 and CDC42 in the high affinity receptor for IgE (FcepsilonRI)-mediated phagocytosis using transfected rat basophil leukemia (RBL-2H3) mast cells expressing dominant inhibitory forms of CDC42 and Rac1. Binding of opsonized particles to untransfected RBL-2H3 cells led to the accumulation of F-actin at the site of contact with the particles and further, to particle internalization. This process was inhibited by Clostridium difficile toxin B, a general inhibitor of Rho GTP-binding proteins. Dominant inhibition of Rac1 or CDC42 function severely inhibited particle internalization but not F-actin accumulation. Inhibition of CDC42 function resulted in the appearance of pedestal-like structures with particles at their tips, while particles bound at the surface of the Rac1 mutant cell line were enclosed within thin membrane protrusions that did not fuse. These phenotypic differences indicate that Rac1 and CDC42 have distinct functions and may act cooperatively in the assembly of the phagocytic cup. Inhibition of phagocytosis in the mutant cell lines was accompanied by the persistence of tyrosine-phosphorylated proteins around bound particles. Phagocytic cup closure and particle internalization were also blocked when phosphotyrosine dephosphorylation was inhibited by treatment of RBL-2H3 cells with phenylarsine oxide, an inhibitor of protein phosphotyrosine phosphatases. Altogether, our data show that Rac1 and CDC42 are required to coordinate actin filament organization and membrane extension to form phagocytic cups and to allow particle internalization during FcR-mediated phagocytosis. Our data also suggest that Rac1 and CDC42 are involved in phosphotyrosine dephosphorylation required for particle internalization.  相似文献   

6.
The shear-induced intracellular signal transduction pathway invascular endothelial cells involves tyrosine phosphorylation andactivation of mitogen-activated protein (MAP) kinase, which may beresponsible for the sustained release of nitric oxide. MAP kinase isknown to be activated by reactive oxygen species (ROS), such asH2O2,in several cell types. ROS production in ligand-stimulatednonphagocytic cells appears to require the participation of aRas-related small GTP-binding protein, Rac1. We hypothesized that Rac1might serve as a mediator for the effect of shear stress on MAP kinaseactivation. Exposure of bovine aortic endothelial cells to laminarshear stress of 20 dyn/cm2 for5-30 min stimulated total cellular and cytosolic tyrosine phosphorylation as well as tyrosine phosphorylation of MAP kinase. Treating endothelial cells with the antioxidantsN-acetylcysteine and pyrrolidinedithiocarbamate inhibited in a dose-dependent manner theshear-stimulated increase in total cytosolic and, specifically, MAPkinase tyrosine phosphorylation. Hence, the onset of shear stresscaused an enhanced generation of intracellular ROS, as evidenced by anoxidized protein detection kit, which were required for theshear-induced total cellular and MAP kinase tyrosine phosphorylation. Total cellular and MAP kinase tyrosine phosphorylation was completely blocked in sheared bovine aortic endothelial cells expressing adominant negative Rac1 gene product (N17rac1). We concluded that theGTPase Rac1 mediates the shear-induced tyrosine phosphorylation of MAPkinase via regulation of the flow-dependent redox changes inendothelial cells in physiological and pathological circumstances.  相似文献   

7.
8.
Colonization of urogenital tissues by the human pathogen Neisseria gonorrhoeae is characteristically associated with purulent exudates of polymorphonuclear phagocytes (PMNs) containing apparently viable bacteria. Distinct variant forms of the phase-variable opacity-associated (Opa) outer membrane proteins mediate the non-opsonized binding and internalization of N. gonorrhoeae by human PMNs. Using overlay assays and an affinity isolation technique, we demonstrate the direct interaction between Opa52-expressing gonococci and members of the human carcinoembryonic antigen (CEA) family which express the CD66 epitope. Gonococci and recombinant Escherichia coli strains synthesizing Opa52 showed specific binding and internalization by transfected HeLa cell lines expressing the CD66 family members BGP (CD66a), NCA (CD66c), CGM1 (CD66d) and CEA (CD66e), but not that expressing CGM6 (CD66b). Bacterial strains expressing either no opacity protein or the epithelial cell invasion-associated Opa50 do not bind these CEA family members. Consistent with their different receptor specificities, Opa52-mediated interactions could be inhibited by polyclonal anti-CEA sera, while Opa50 binding was instead inhibited by heparin. Using confocal laser scanning microscopy, we observed a marked recruitment of CD66 antigen by Opa52-expressing gonococci on both the transfected cell lines and infected PMNs. These data indicate that members of the CEA family constitute the cellular receptors for the interaction with, and internalization of, N. gonorrhoeae.  相似文献   

9.
Neisseria gonorrhoeae (gonococci, GC) are phagocytosed by neutrophils through the interaction between opacity proteins (Opa) and the CEA (CD66) family of antigens. In order to study this interaction, we used the human myeloid leukemia HL60 cell line, which differentiates into granulocyte-like cells upon treatment with dimethylsulfoxide (DMSO) or retinoic acid (RA). We found that RA-, but not DMSO- or untreated-HL60 cells, can phagocytose OpaI-expressing gonococci as well as Escherichia coli. The interaction of OpaI E. coli with RA-treated HL60 cells was inhibited by antibodies against CEACAM1. Phagocytosis of OpaI E. coli was found to be a result of the expression of CEACAM1 in RA-treated HL60 cells. Our results indicate that the level of expression of CEACAM1 in HL60 cells can be regulated by treatment with RA in a differentiation-dependent manner, and that this is important for phagocytosis of OpaI-expressing gonococci or E. coli.  相似文献   

10.
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor.  相似文献   

11.
CD69 is a signal transducing disulfide-linked homodimer functionally expressed on platelets, CD3bright thymocytes, and activated lymphocytes. In an attempt to investigate early molecular events in CD69-mediated cell activation we studied the relative contribution of phospholipase A2 (PLA2) and phosphatidylinositol-specific phospholipase C-dependent pathways during platelet activation induced by CD69 stimulation. Thromboxane A2 (TXA2) synthetase inhibitor and TXA2R inhibitor R68070 were able to inhibit platelet aggregation induced by CD69 stimulation, indicating that TXA2 was the main mediator of the response. CD69-induced arachidonic acid release and TXA2 production were essentially PLA2 dependent because they could be blocked by the PLA2 inhibitor quinacrine. Inositol 1,3,4-trisphosphate generation was clearly detectable after CD69 cross-linking, but it was completely abrogated by quinacrine and R68070 and therefore secondary to TXA2 release and TXA2R engagement. Finally, direct measurement of enzymatic activity in vitro using radiolabeled phospholipid vesicles showed that CD69 cross-linking resulted in PLA2-dependent arachidonic acid and lysophosphatidylcholine generation from phosphatidylcholine, which was sensitive to quinacrine but not to R68070. By contrast, CD69-induced 1,2-diacylglycerol release from phosphatidylinositol 4,5-bisphosphate was blocked by both inhibitors. These results indicate a preferential involvement of PLA2 in CD69-dependent signal transduction in platelets and provide evidence for the unique role of PLA2-mediated activation pathways in transmembrane receptor signaling.  相似文献   

12.
CD157, a recently characterized leukocyte surface antigen, has recently been shown to induce tyrosine phosphorylation of a 130-kDa protein (p130) when cross-linked with its antibody (ligand). We have further investigated the detailed kinetics, behaviour and cell-type specificity of this CD157-stimulated p130 phosphorylation. We demonstrate that CD157-mediated p130 phosphorylation is ligand independent in recombinant CD157-expressing CHO, MCA102 and COS-7 cells but is ligand dependent in HL-60-differentiated monocytes (mHL-60) having enhanced CD157 expression. This p130 phosphorylation is activated only at lower temperatures (0-4 degrees C) in MCA102, COS-7 and mHL-60 cells but is temperature insensitive in CHO cells. We further demonstrate that the CHO/CD157 cell clones have approximately 22-28% slower rates of proliferation than that of a CHO/mock clone. But the MCA102 cell proliferation remains unaffected by CD157 expression. We postulate that the difference in the temperature sensitivity of p130 phosphorylation can be responsible for the discrepancy in the rates of MCA102/CD157 and CHO/CD157 cell proliferation.  相似文献   

13.
Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.  相似文献   

14.
15.
The family of testis-specific serine-threonine kinases (TSSKs) consists of four members whose expression is confined almost exclusively to testis. Very little is known about their physiological role and mechanisms of action. We cloned human and mouse TSSK3 and analysed the biochemical properties, substrate specificity and in vitro activation. In vitro TSSK3 exhibited the ability to autophosphorylate and to phosphorylate test substrates such as histones, myelin basic protein and casein. Interestingly, TSSK3 showed maximal in vitro kinase activity at 30 degrees C, in keeping with it being testis specific. Sequence comparison indicated the existence of a so-called 'T-loop' within the TSSK3 catalytic domain, a structure present in the AGC family of protein kinases. To test if this T-loop is engaged in TSSK3 regulation, we mutated the critical threonine residue within the T-loop to alanine (T168A) which resulted in inactivation of TSSK3 kinase. Furthermore, Thr168 is phosphorylated in vitro by the T-loop kinase phosphoinositide-dependent protein kinase-1 (PDK1). PDK1-induced phosphorylation increased in vitro TSSK3 kinase activity, suggesting that TSSK3 can be regulated in the same way as AGC kinase family members. Analysis of peptide sequences identifies the peptide sequence RRSSSY containing Ser5 that is a target for TSSK3 phosphorylation, as an efficient and specific substrate for TSSK3.  相似文献   

16.
Fibroblasts transformed by Fos oncogenes display increased expression of a number of genes implicated in tumor cell invasion and metastasis. In contrast to normal 208F rat fibroblasts, Fos-transformed 208F fibroblasts are growth factor independent for invasion. We demonstrate that invasion of v-Fos- or epidermal growth factor (EGF)-transformed cells requires AP-1 activity. v-Fos-transformed cell invasion is inhibited by c-jun antisense oligonucleotides and by expression of a c-jun dominant negative mutant, TAM-67. EGF-induced invasion is inhibited by both c-fos and c-jun antisense oligonucleotides. CD44s, the standard form of a transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. We demonstrate that increased expression of CD44 in Fos- and EGF-transformed cells is dependent upon AP-1. CD44 antisense oligonucleotides reduce expression of CD44 in v-Fos- or EGF-transformed cells and inhibit invasion but not migration. Expression of a fusion protein between human CD44s and Aequorea victoria green fluorescent protein (GFP) in 208F cells complements the inhibition of invasion by the rat-specific CD44 antisense oligonucleotide. We further show that both v-Fos and EGF transformations result in a concentration of endogenous CD44 or exogenous CD44-GFP at the ends of pseudopodial cell extensions. These results support the hypothesis that one role of AP-1 in transformation is to activate a multigenic invasion program.  相似文献   

17.
We have previously shown that CD4 ligand binding inhibits LFA-1-dependent adhesion between CD4+ T cells and B cells in a p56(lck)- and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In this work, downstream events associated with adhesion inhibition have been investigated. By using HUT78 T cell lines, CD4 ligands were shown to induce a dissociation of LFA-1 from cytohesin, a cytoplasmic protein known to bind LFA-1 and to enhance the affinity/avidity of LFA-1 for its ligand ICAM-1. A dissociation of PI3-kinase from cytohesin is also observed. In parallel, we have found that CD4 ligand binding induced a redistribution of PI3-kinase and of the tyrosine phosphatase SHP-2 to the membrane and induced a transient formation of protein interactions including PI3-kinase; an adaptor protein, Gab2; SHP-2; and a SH2 domain-containing inositol phosphatase, SHIP. By using antisense oligonucleotides or transfection of transdominant mutants, down-regulation of adhesion was shown to require the Gab2/PI3-kinase association and the expression of SHIP and SHP-2. We therefore propose that CD4 ligands, by inducing these molecular associations, lead to sustained local high levels of D-3 phospholipids and possibly regulate the cytohesin/LFA-1 association.  相似文献   

18.
19.
20.
The lipopolysaccharides of Neisseria gonorrhoeae colony types 1 and 4.   总被引:19,自引:0,他引:19  
The lipopolysaccharides (LPS) of strains of Neisseria gonorrhoeae grown in type 1 (T1) and 4 (T4) colony forms have been isolated. LPS from T4 colony type cells on mild hydrolysis gave a lipid A and a core oligosaccharide composed of 2-amino-2-deoxy-D-glucose, D-glucose, D-galactose, L-glycero-D-manno-heptose and 3-deoxy-D-manno-octuosonic acid that appeared to be common to all the strains examined. LPS from T1 colony type cells on mild hydrolysis gave a lipid A and high molecular weight O polysacc,arides which showed considerable differences in glycose composition for each strain examined. In those strains examined, T4 cells appear to produce a common "R" type LPS whereas T1 cells produce an "S" type LPS with structurally different O polysaccharide structures which probably account for serologically differentiated strains of N. gonorrhoeae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号