首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soluble cytoplasmic protein pyruvate kinase (PK) has been expressed at the cell surface in a membrane-anchored form (APK). The hybrid protein contains the NH2-terminal signal/anchor domain of a class II integral membrane protein (hemagglutinin/neuraminidase, of the paramyxovirus SV5) fused to the PK NH2 terminus. APK contains a cryptic site that is used for N-linked glycosylation but elimination of this site by site-specific mutagenesis does not prevent cell surface localization. Truncated forms of the APK molecule, with up to 80% of the PK region of APK removed, can also be expressed at the cell surface. These data suggest that neither the complete PK molecule nor its glycosylation are necessary for intracellular transport of PK to the cell surface, and it is possible that specific signals may not be needed in the ectodomain of this hybrid protein to specify cell surface localization.  相似文献   

2.
3.
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase- from M phase-specific functions of cyclin A/Cdk2.  相似文献   

4.
The Ku autoantigen/KARP-1 (Ku86 autoantigen related protein-1) plays an important role in the double-strand break repair of mammalian DNA as a DNA-binding component of DNA-dependent protein kinase (DNA-PK) complex. KARP-1 is differently transcribed from the human Ku86 autoantigen gene locus and it is implicated in the control of DNA-dependent protein kinase activity. We cloned rKAB1, a rat homolog of KAB1 (KARP-1 binding protein 1 of human) from a rat hippocampal cDNA library. rKAB1 mRNA was specifically expressed in the brain and the thymus. EGFP-tagged rKAB1 protein localized in cell nucleus and in the condensed chromosome during the mitotic cell division. We found that rKAB1 works as a protective protein against cell damage by oxidative stress.  相似文献   

5.
Inositol lipid-derived second messengers have long been known to have an important regulatory role in cell physiology. Phosphatidylinositol 3-kinase (PI3K) synthesizes the second messenger 3,4,5'-phosphatidylinositol trisphosphate (Ptdlns 3,4,5P3) which controls a multitude of cell functions. Down-stream of PI3K/PtdIns 3,4,5P3 is the serine/threonine protein kinase Akt (protein kinase B, PKB). Since the PI3K/ PtdIns 3,4,5P3 /Akt pathway stimulates cell proliferation and suppresses apoptosis, it has been implicated in carcinogenesis. The lipid phosphatase PTEN is a negative regulator of this signaling network. Until recently, it was thought that this signal transduction cascade would promote its anti-apoptotic effects when activated in the cytoplasm. Several lines of evidence gathered over the past 20 years, have highlighted the existence of an autonomous nuclear inositol lipid cycle, strongly suggesting that lipids are important components of signaling pathways operating at the nuclear level. PI3K, PtdIns(3,4,5)P3, Akt, and PTEN have been identified within the nucleus and recent findings suggest that they are involved in cell survival also by operating in this organelle, through a block of caspase-activated DNase and inhibition of chromatin condensation. Here, we shall summarize the most updated and intriguing findings about nuclear PI3K/ PtdIns(3,4,5)P3/Akt/PTEN in relationship with carcinogenesis and suppression of apoptosis.  相似文献   

6.
BAG-1, an anti-apoptotic tumour marker   总被引:1,自引:0,他引:1  
Tang SC 《IUBMB life》2002,53(2):99-105
BAG-1 is a multifunctional and anti-apoptotic or anti-cell death protein that interacts with a variety of cellular proteins and affects their functions. On the cell surface, it binds to the cytosolic domain of the growth factor receptors and enhances the protection from cell death triggered by growth factor receptors. In the cytosol, it binds to Bcl-2 and heat shock protein, and modulates their functions. In the nucleus, it binds to a variety of nuclear hormone receptors and inhibits hormone-induced apoptosis. BAG-1 is widely overexpressed in a variety of tumour cell lines and cancer tissues. In addition, differential expression of BAG-1 isoforms has been observed. Preclinical studies indicate that overexpression of BAG-1, especially its nuclear and cytoplasmic isoforms, may be useful as a prognostic and/or predictive biomarker. Pilot clinical studies have demonstrated that overexpression of nuclear BAG-1 may be associated with a shorter survival in breast and laryngeal carcinomas. Conversely, overexpression of cytoplasmic BAG-1 may be associated with a better clinical outcome in early stage breast cancer and in non-small cell lung cancer. Further large-scale clinical studies are warranted to establish the role of BAG-1 as a novel prognostic and/or predictive biomarker in the clinical management of these common malignancies.  相似文献   

7.
Bcl-2 is a gene family involved in the suppression of apoptosis in response to a wide range of cellular insults. Multiple papers have suggested a link between Bcl-2 and oxidative damage/antioxidant protection. We therefore examined parameters of antioxidant defense and oxidative damage in two different cell lines, NT-2/D1 (NT-2) and SK-N-MC, overexpressing Bcl-2 as compared with vector-only controls. Bcl-2 transfectants of both cell lines were more resistant to H2O2 and showed increases in GSH level and Cu/Zn-superoxide dismutase (SOD1) activity, but not in Mn-superoxide dismutase, glutathione peroxidase, or glutathione reductase activities. Catalase activity was increased in SK-N-MC cells. Overexpression of Bcl-2 did not significantly decrease levels of oxidative DNA damage (measured as 8-hydroxyguanine) or lipid peroxidation, but it decreased levels of 3-nitrotyrosine in both cell lines and protein carbonyls in SK-N-MC cells only. It also increased proteasome activity in both cell lines. We conclude that Bcl-2 raises cellular antioxidant defense status, but this is not necessarily reflected in decreased levels of oxidative damage to DNA and lipids. The ability of Bcl-2 overexpression to decrease 3-nitrotyrosine levels suggests that it may decrease formation of peroxynitrite or other reactive nitrogen species; this was confirmed as decreased production of NO2/NO3 in the transfected cells and a fall in the level of nNOS protein.  相似文献   

8.
Jan Y  Matter M  Pai JT  Chen YL  Pilch J  Komatsu M  Ong E  Fukuda M  Ruoslahti E 《Cell》2004,116(5):751-762
A delicate balance of signals regulates cell survival. One set of these signals is derived from integrin-mediated cell adhesion to the extracellular matrix (ECM). Loss of cell attachment to the ECM causes apoptosis, a process known as anoikis. In searching for proteins involved in cell adhesion-dependent regulation of anoikis, we identified Bit1, a mitochondrial protein that is released into the cytoplasm during apoptosis. Cytoplasmic Bit1 forms a complex with AES, a small Groucho/transducin-like enhancer of split (TLE) protein, and induces cell death with characteristics of caspase-independent apoptosis. Cell attachment to fibronectin counteracts the apoptotic effect of Bit1 and AES. Increasing Bit1 expression enhances anoikis, while suppressing the expression reduces it. Thus, we have elucidated an integrin-controlled pathway that is, at least in part, responsible for the cell survival effects of cell-ECM interactions.  相似文献   

9.
Although it is known that mechanical stretching of cells can induce significant increases in cell growth and shape, the intracellular signaling pathways that induce this response at the level of the cell nucleus is unknown. The transport of molecules from the cell cytoplasm to the nucleoplasm through the nuclear pore is a key pathway through which gene expression can be controlled in some conditions. It is presently unknown if mechanical stimuli can induce changes in nuclear pore expression and/or function. The purpose of the present investigation was to determine if mechanical stretching of a cell will alter nuclear protein import and the mechanisms that may be responsible. Vascular smooth muscle cells that were mechanically stretched exhibited an increase in proliferating cell nuclear antigen expression, cell number, and cell size within 24-48 h. Cells were microinjected with marker proteins for nuclear import. Nuclear protein import was significantly stimulated in stretched cells when compared with control. This was associated with an increase in the expression of nuclear pore proteins as detected by Western blots. Inhibition of the MAPK pathway blocked the stretch-induced stimulation of both cell proliferation and nuclear protein import. We conclude that nuclear protein import and nuclear pore density can adapt to mechanical stimuli during the process of cell growth through a MAPK-mediated mechanism.  相似文献   

10.
Cytostatin, which is isolated from a microbial cultured broth as a low molecular weight inhibitor of cell adhesion to extracellular matrix (ECM), has anti-metastatic activity against B16 melanoma cells in vivo. In this study, we examined a target of cytostatin inhibiting cell adhesion to ECM. Cytostatin inhibited tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin upon B16 cell adhesion to fibronectin. While the amount of FAK was not affected by cytostatin, electrophoretically slow-migrating paxillin appeared. Alkaline phosphatase treatment diminished cytostatin-induced slow-migrating paxillin. Furthermore, cytostatin increased intracellular serine/threonine-phosphorylated proteins and was found to be a selective inhibitor of protein phosphatase 2A (PP2A). Cytostatin inhibited PP2A with an IC(50) of 0.09 microgram/ml in a non-competitive manner against a substrate, p-nitrophenyl phosphate, but it had no apparent effect on other protein phosphatases including PP1, PP2B and alkaline phosphatase even at 100 microgram/ml. On the contrary, dephosphocytostatin, a cytostatin analogue, without inhibitory effect on PP2A did not affect B16 cell adhesion including FAK and paxillin. These results indicate that cytostatin inhibits cell adhesion through modification of focal contact proteins such as paxillin by inhibiting a PP2A type protein serine/threonine phosphatase. This is the first report that describes a drug with anti-metastatic ability that inhibits PP2A selectively.  相似文献   

11.
Sulfated glycoprotein 2 (SGP-2) is a rat glycoprotein that is particularly abundant in seminal fluid, where it is found associated with the acrosome and the tail of mature spermatozoa; for this reason it has been suggested that it has an important role in spermatogenesis. On the basis of nucleotide sequence homology, it has been proposed that the orthologous human gene is that coding for serum protein-40,40 (SP-40,40), a serum protein also called complement lysis inhibitor (CLI), SP-40,40 has been shown to act as a control mechanism of the complement cascade: in fact, it prevents the binding of a C5b-C7 complex to the membrane of the target cell and in this way inhibits complement-mediated cytolysis. SGP-2 and SP-40,40 seem then to be part of different biological systems. Furthermore it has been shown that another protein, testosterone-repressed prostate message 2 (TRPM-2), shares sequence homology with SGP-2 and SP-40,40. TRPM-2 is expressed at high levels and in a temporally precisely defined manner in dying cells, an observation that would suggest its involvement in the cascade of events leading to cell death. We have used a large panel of 24 mouse/human hybrid cell lines and a cDNA for SGP-2, which is also highly homologous to that for rat clusterin, to map the chromosomal location of the orthologous human gene. The mapping data and the Southern analysis presented in this paper, in addition to the data available from the literature, strongly suggest that in the human genome there is a single locus homologous to the probe used and that it codes for the protein which has been called, in different species, SP-40,40, SGP-2, clusterin, and TRPM-2. The chromosomal mapping of the locus for this multiname protein should facilitate its cloning and a better understanding of the apparently many biological functions of its product.  相似文献   

12.
Phosphoinositide 3-kinase in disease: timing, location, and scaffolding   总被引:10,自引:0,他引:10  
When PI3Ks are deregulated by aberrant surface receptors or modulators, accumulation of PtdIns(3,4,5)P3 leads to increased cell growth, proliferation and contact-independent survival. The PI3K/PKB/TOR axis controls protein synthesis and growth, while PtdIns(3,4,5)P3-mediated activation of Rho GTPases directs cell motility. PI3K activity has been linked to the formation of tumors, metastasis, chronic inflammation, allergy and cardiovascular disease. Although increased PtdIns(3,4,5)P3 is a well-established cause of disease, it is seldom known which PI3K isoform is implied. Recent work has demonstrated that PI3Kgamma contributes to the control of cAMP levels in the cardiac system, where the protein acts as a scaffold, but not as a lipid kinase.  相似文献   

13.
The type II calmodulin-dependent protein kinase is an oligomer existing in multiple isozymic forms. To facilitate investigations of the regulatory mechanisms of this complex enzyme, we have constructed a truncated, calmodulin-dependent monomer of the alpha subunit. The N-terminal enzyme fragment (alpha 315) was expressed at high levels in a baculovirus/insect cell expression system. The recombinant protein was purified chromatographically using DEAE-cellulose, calmodulin-Sepharose, and AffiGel blue, yielding 4 mg of kinase from 1.5 x 10(8) cells in 4 h. Characterization of the truncated kinase indicated that it is a monomer and that interactions of alpha 315 with calmodulin and substrates are indistinguishable from those observed for purified holoenzyme from rat brain. These results indicate that the baculovirus/insect cell expression system is well suited for producing alpha 315, a structurally simplified model of the type II calmodulin-dependent protein kinase.  相似文献   

14.
Lysenin is 297 amino acid long toxin derived from the earthworm Eisenia foetida which specifically recognizes sphingomyelin and induces cell lysis. We synthesized lysenin gene supplemented with a polyhistidine tag, subcloned it into the pT7RS plasmid and the recombinant protein was produced in Escherichia coli. In order to obtain lysenin devoid of its lytic activity, the protein was mutated by substitution of tryptophan 20 by alanine. The recombinant mutant lysenin-His did not evoke cell lysis, although it retained the ability to specifically interact with sphingomyelin, as demonstrated by immunofluorescence microscopy and by dot blot lipid overlay and liposome binding assays. We found that the lytic activity of wild-type lysenin-His was correlated with the protein oligomerization during interaction with sphingomyelin-containing membranes and the amount of oligomers was increased with an elevation of sphingomyelin/lysenin ratio. Blue native gel electrophoresis indicated that trimers can be functional units of the protein, however, lysenin hexamers and nanomers were stabilized by chemical cross-linking of the protein and by sodium dodecyl sulfate. When incorporated into planar lipid bilayers, wild type lysenin-His formed cation-selective channels in a sphingomyelin-dependent manner. We characterized the channel activity by establishing its various open/closed states. In contrast, the mutant lysenin-His did not form channels and its correct oligomerization was strongly impaired. Based on these results we suggest that lysenin oligomerizes upon interaction with sphingomyelin in the plasma membrane, forming cation-selective channels. Their activity disturbs the ion balance of the cell, leading eventually to cell lysis.  相似文献   

15.
人vasostatin的克隆、表达、纯化及活性检测   总被引:4,自引:0,他引:4  
从成人肝脏cDNA文库中,PCR扩增得到人vasostatin基因编码区序列,将此序列插入原核表达载体pQE30进行表达,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)测定表明产物以包涵体形式存在,表达量占菌体总蛋白量的50%以上.包涵体洗涤后溶于8 mol/L尿素溶液,在变性条件下通过镍-氨三乙酸(Ni-NTA)金属螯合亲和层析柱进行纯化后,再经透析进行复性.N端氨基酸序列、分子质量、等电点等理化指标的测定结果与理论值相符.用内皮细胞增殖试验、内皮细胞迁移试验以及鸡胚尿囊膜血管生成试验等方法进行活性检测,证实复性的表达产物具有抑制内皮细胞增殖和迁移、抑制鸡胚尿囊膜血管生成的功能.  相似文献   

16.
C/EBP homologous protein (CHOP) is a stress-inducible nuclear protein that is crucial for the development of programmed cell death and regeneration; however, the regulation of its function has not been well characterized. Slbo, a Drosophila homolog of C/EBP (CCAAT/enhancer binding protein), was shown to be unstabilized by tribbles. Here, we identified TRB3 as a tribbles ortholog in humans, which associated with CHOP to suppress the CHOP-dependent transactivation. TRB3 is induced by various forms endoplasmic reticulum (ER) stress later than CHOP. Tunicamycin treatment enhanced the TRB3 promoter activity, while dominant-negative forms of CHOP suppressed the tunicamycin-induced activation. In addition, the tunicamycin response region in the TRB3 promoter contains amino-acid response elements overlapping the CHOP-binding site, and CHOP and ATF4 cooperated to activate this promoter activity. Knockdown of endogenous ATF4 or CHOP expression dramatically repressed tunicamycin-induced TRB3 induction. Furthermore, knockdown of TRB3 expression decreased ER stress-dependent cell death. These results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHOP/ATF4 functions, and that it is involved in CHOP-dependent cell death during ER stress.  相似文献   

17.
In HL60 cells a nuclear protein of Mr 55,000 is retinoylated, with the formation of a thioester bond. To gain further knowledge on the role of retinoylation we studied it in cell lines with varied responses to retinoic acid (RA). Compared to HL60 the extent of retinoylation (mol/cell) was about fivefold higher in HL60/MRI, a mutant which is more sensitive to RA than HL60. Retinoylation occurred to the same extent and at similar rates in HL60 and in HL60/RA-res, a mutant resistant to differentiation by RA. One-dimensional polyacrylamide gel electrophoresis patterns for the three HL60 cell lines were similar. However, two-dimensional polyacrylamide gel electrophoresis patterns of the three HL60 cell lines were distinct. While we saw the same major retinoylated protein of Mr 55,000 in the three cell lines, the HL60/RA-res cells also contained a high level of a protein with the same Mr and a lower pI. The extent of retinoylation was greater in the RA-sensitive embryonal carcinoma cell line, PCC4.aza1R, than in a RA-resistant cell line, PCC4.(RA)-2. One-dimensional polyacrylamide gel electrophoresis patterns of retinoylated proteins of the embryonal carcinoma cell lines were different from HL60 and from each other. The retinoylation pattern of the normal canine kidney cell line (MDCK) was different from either HL60 or the embryonal carcinoma cells. These results showed the retinoylation was widespread and that the response to RA of different cell types may depend on the retinoylation of specific proteins.  相似文献   

18.
R Hishida  T Ishihara  K Kondo    I Katsura 《The EMBO journal》1996,15(16):4111-4122
Proteins of the tolloid/bone morphogenetic protein (BMP)-1 family play important roles in the differentiation of cell fates. Among those proteins are BMP-1, which plays a role in cartilage and bone formation in mammals, the TOLLOID protein, which is required for the establishment of the dorsoventral axis of Drosophila embryos and BP10/SpAN, which are thought to act in the morphogenesis of sea urchins. These proteins have some properties in common. First, they contain the astacin metalloprotease domain, the CUB domain and the epidermal growth factor-like domain. Second, they are expressed in embryos at stages expected for their role in cell differentiation. Third, at least BMP-1 and TOLLOID are thought to interact with proteins of the transforming growth factor-beta family. We report that the hch-1 gene of the nematode Caenorhabditis elegans encodes a tolloid/BMP-1 family protein. The protein has the characteristic domains common to the tolloid/ BMP-1 family. Like other members of the family, it is expressed in embryos. However, the phenotype of hch-1 mutants shows that it is required for normal hatching and normal migration of a post-embryonic neuroblast. Furthermore, in spite of its expression in embryogenesis, it is not required for the viability of embryos. These results show new functions of the tolloid/BMP-1 family proteins and give insight into their evolution.  相似文献   

19.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

20.
Akt, also known as protein kinase B, is a serine/threonine protein kinase with antiapoptotic activities; also, it is a downstream target of phosphatidylinositol 3-kinase. Here we show that Akt1/Akt2 play a critical role in osteoclast differentiation but not cell survival and that mammalian target of rapamycin (mTOR) and Bim, a pro-apoptotic Bcl-2 family member, are required for cell survival in isolated osteoclast precursors. To investigate the function of Akt1, Akt2, mTOR, and Bim, we employed a retroviral system for delivery of small interfering RNA into cells. Loss of Akt1 and/or Akt2 protein inhibited osteoclast differentiation due to down-regulation of IkappaB-kinase (IKK) alpha/beta activity, phosphorylation of IkappaB-alpha, nuclear translocation of nuclear factor-kappaB (NFkappaB) p50, and NFkappaB p50 DNA-binding activity. Surprisingly, deletion of Akt1 and/or Akt2 protein did not stimulate cleaved caspase-3 activity and failed to promote apoptosis. Conversely, loss of mTOR protein induced apoptosis due to up-regulation of cleaved caspase-3 activity. In addition, we found that mTOR is downstream of phosphatidylinositol 3-kinase (but not Akt) and that macrophage colony-stimulating factor regulates Bim expression through mTOR activation for cell survival. These results demonstrate that Akt1/Akt2 are key elements in osteoclast differentiation and that the macrophage colony-stimulating factor stimulation of mTOR leading to Bim inhibition is essential for cell survival in isolated osteoclast precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号