首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In crustaceans, the hepatopancreas is the major organ system responsible for heavy metal detoxification, and within this structure the lysosomes and the endoplasmic reticulum are two organelles that regulate cytoplasmic metal concentrations by selective sequestration processes. This study characterized the transport processes responsible for zinc uptake into hepatopancreatic lysosomal membrane vesicles (LMV) and the interactions between the transport of this metal and those of calcium, copper, and cadmium in the same preparation. Standard centrifugation methods were used to prepare purified hepatopancreatic LMV and a rapid filtration procedure, to quantify 65Zn2+ transfer across this organellar membrane. LMV were osmotically reactive and exhibited a time course of uptake that was linear for 15-30 sec and approached equilibrium by 300 sec. 65Zn2+ influx was a hyperbolic function of external zinc concentration and followed Michaelis-Menten kinetics for carrier transport (Km = 32.3 +/- 10.8 microM; Jmax = 20.7 +/- 2.6 pmol/mg protein x sec). This carrier transport was stimulated by the addition of 1 mM ATP (Km = 35.89 +/- 10.58 microM; Jmax = 31.94+/-3.72 pmol/mg protein/sec) and replaced by an apparent slow diffusional process by the simultaneous presence of 1 mM ATP+250 microM vanadate. Thapsigargin (10 microM) was also a significant inhibitor of zinc influx (Km = 72.87 +/- 42.75 microM; Jmax =22.86 +/- 4.03 pmol/mg protein/sec), but not as effective in this regard as was vanadate. Using Dixon analysis, cadmium and copper were shown to be competitive inhibitors of lysosomal membrane vesicle 65Zn2+ influx by the ATP-dependent transport process (cadmium Ki = 68.1 +/- 3.2 microM; copper Ki = 32.7 +/- 1.9 microM). In the absence of ATP, an outwardly directed H+ gradient stimulated 65Zn2+ uptake, while a proton gradient in the opposite direction inhibited metal influx. The present investigation showed that 65Zn2+ was transported by hepatopancreatic lysosomal vesicles by ATP-dependent, vanadate-, thapsigargin-, and divalent cation-inhibited, carrier processes that illustrated Michaelis-Menten influx kinetics and was stimulated by an outwardly directed proton gradient. These transport properties as a whole suggest that this transporter may be a lysosomal isoform of the ER Sarco-Endoplasmic Reticulum Calcium ATPase.  相似文献   

2.
Understanding the mechanisms of intestinal zinc uptake in fish is of considerable interest from both nutritional and toxicological perspectives. In this study, properties of zinc transport across the apical membrane of freshwater rainbow trout intestinal epithelia were examined using right-side-out brush border membrane vesicles (BBMV's). Extravesicular calcium was found to have complex actions on zinc uptake. At a low zinc concentration of 1 microM, calcium (0.1-2 mM) significantly stimulated zinc uptake. In contrast, calcium inhibited zinc uptake at higher zinc levels (100 microM). Lanthanum and cadmium in the external medium did not block zinc uptake, suggesting that interactions between zinc and calcium were not exerted at a calcium channel. Copper also failed to exercise any inhibitory action. Zinc association with the BBMV's was enhanced by an outward potassium gradient. This stimulatory effect was only present at a zinc concentration of 100 microM. The potassium channel blocker, tetraethylammonium chloride inhibited zinc uptake at this relatively high zinc concentration, suggesting the presence of a low affinity zinc uptake pathway linked to potassium efflux. The present study provides evidence that the mechanism of intestinal zinc uptake in rainbow trout is pharmacologically very different from that of the piscine gill and the mammalian intestine.  相似文献   

3.
Zinc is both a vital nutrient and an important toxicant to aquatic biota. In order to understand the interplay between nutrition and toxicity, it will be important to determine the mechanisms and the factors that regulate zinc uptake. The mechanism of apical intestinal Zn(II) uptake in freshwater rainbow trout and its potential modification by the complexing amino acid histidine was investigated using brush-border membrane vesicles (BBMVs). Following characterisation of the BBMV preparation, zinc uptake in the absence of histidine was both time- and concentration-dependent and consisted of two components. A saturable phase of uptake was described by an affinity constant of 57+/-17 microM and a transport capacity of 1867+/-296 nmol mg membrane protein(-1) min(-1). At higher zinc levels (>500 microM) a linear, diffusive component of uptake was evident. Zinc transport was also temperature-dependent, with Q10 values suggesting zinc uptake was a carrier-mediated process. Zinc uptake by vesicles in the presence of histidine was correlated to a mono-histidine species (Zn(His)+) at all Zn(II) concentrations examined.  相似文献   

4.
L-Glutamine transport into porcine jejunal enterocyte brush border membrane vesicles was studied. Uptake was mediated by a Na(+)-dependent and a Na(+)-independent pathway as well as by diffusion. The initial rates of glutamine uptake over a range of concentrations is both Na(+)-gradient and Na(+)-free conditions were analyzed and kinetic parameters were obtained. Na(+)-dependent glutamine transport had a K(m) of 0.77 +/- 0.16 mM and a Jmax of 70.7 +/- 5.8 pmol mg protein-1 s-1; Na(+)-independent glutamine transport had a K(m) of 3.55 +/- 0.78 mM and a Jmax of 55.1 +/- 6.6 pmol mg protein-1 s-1. The non-saturable component measured with HgCl2-poisoned brush border membrane vesicles in the Na(+)-free condition contained passive diffusion and non-specific membrane binding and was defined to be apparent glutamine diffusion and the glutamine permeability coefficient (Kdiff) was estimated to be Kdiff = 3.78 +/- 0.06 pmol 1 mg protein-1 mmol-1 s-1. Results of inhibition experiments showed that Na(+)-dependent glutamine uptake occurred primarily through the brush border system-B degree transporters, whereas Na(+)-independent glutamine uptake occurred via the system-L transporters. Furthermore, the kinetics of L-leucine and L-cysteine inhibition of L-glutamine uptake demonstrated that neutral amino acids sharing the same brush border transporters can effectively inhibit each other in their transport.  相似文献   

5.
The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.  相似文献   

6.
The kinetic basis for trans-effects of intravesicular substrates on the uptake of the organic cation, tetraethylammonium (TEA), into rabbit renal brush-border membrane vesicles (BBMV) was studied. Preloading BBMV with 1, 2, or 4 mM TEA stimulated the initial rate of uptake and the total net accumulation of 0.1 mM [3H]TEA. The stimulatory effect of intravesicular TEA on the initial rate of uptake was a saturable function of the trans-TEA concentration, with a half-maximal effect noted at an intravesicular concentration of 0.28 mM. A 1 mM trans-concentration of TEA increased the Jmax of [3H]TEA uptake (from 4.3 to 6.8 nmol.mg-1.min-1) without affecting the apparent Kt. An outwardly directed H+ gradient also increased Jmax (to 10.7 nmol.mg-1.min-1), although the addition of an outwardly directed TEA gradient did not produce further increases in the rate of TEA uptake. External H+ acted as a competitive inhibitor of TEA uptake, and an increase in external [H+] (from 32 nM to 100 nM) produced an increase in the apparent Kt for TEA transport (from 0.12 to 0.26 mM) without affecting the Jmax. The results suggested that TEA and H+ compete for a common site or set of mutually exclusive sites on the cytoplasmic and luminal aspects of TEA/H+ exchanger in the renal brush border, and that these sites have a similar affinity for TEA.  相似文献   

7.
Zinc is both a vital nutrient and an important toxicant to aquatic biota. In order to understand the interplay between nutrition and toxicity, it will be important to determine the mechanisms and the factors that regulate zinc uptake. The mechanism of apical intestinal Zn(II) uptake in freshwater rainbow trout and its potential modification by the complexing amino acid histidine was investigated using brush-border membrane vesicles (BBMVs). Following characterisation of the BBMV preparation, zinc uptake in the absence of histidine was both time- and concentration-dependent and consisted of two components. A saturable phase of uptake was described by an affinity constant of 57±17 μM and a transport capacity of 1867±296 nmol mg membrane protein−1 min−1. At higher zinc levels (>500 μM) a linear, diffusive component of uptake was evident. Zinc transport was also temperature-dependent, with Q10 values suggesting zinc uptake was a carrier-mediated process. Zinc uptake by vesicles in the presence of histidine was correlated to a mono-histidine species (Zn(His)+) at all Zn(II) concentrations examined.  相似文献   

8.
Integumentary uptake of [3H]-L-histidine by Nereis succinea was measured in the presence and absence of selected heavy metals and the amino acid L-leucine in 60% artificial seawater (ASW). The time course of 10 microM [3H]-L-histidine uptake into worms over a 60 min incubation was approximately doubled in the presence of 0.5 microM zinc and when calcium in the incubation medium was reduced from 6 mM to 5 microM the stimulatory effect of zinc on amino acid accumulation was reduced and uptake under the latter conditions was approximately half that of the control. Zinc stimulation of [3H]-L-histidine influx was a hyperbolic function of zinc concentration over the range 0 to 50 microM metal and displayed an apparent activation or affinity constant of 385+/-127 nM Zn(2+). The hyperbolic stimulatory effect of 1 microM Zn(2+) on the time course of 10 microM [3H]-L-histidine uptake was abolished in the presence of 25 microM L-leucine, suggesting that this amino acid shared the same transport system as [3H]-L-histidine and acted as a potential competitive inhibitor. Influx of [3H]-L-histidine was a hyperbolic function of external amino acid concentration and displayed an apparent affinity constant (Km) of 23.71+/-5.02 microM and an apparent aximal velocity (J(max)) of 4701+/-449 pmol/g dry wt.x15 min. Addition of 0.5 microM zinc resulted in a four-fold increase in J(max) and a doubling of K(m), suggesting the effect of the metal was mostly on the rate of amino acid transport. [3H]-L-histidine influx was mildly stimulated by Fe(2+) (0.5 microM), but was unaffected by either Ag(+) or Al(3+) (both at 0.5 microM). These results suggest that [3H]-L-histidine uptake into worm integument may take place by the classical Na(+)-independent L-transport system shared by L-leucine and regulated by exogenous calcium and other divalent metal concentrations.  相似文献   

9.
Zinc uptake by syncytiotrophoblast microvillous membrane vesicles (SMMV) from human placentas was characterized and the effects of maternal serum zinc levels at term and of gestational age on kinetic parameters were evaluated. Zinc uptake at pH 7.2 was rapid for the first 2 min, followed by a slower increase, approaching equilibrium after 30 min. Uptake was saturable at a zinc concentration of 30 micromol/L, higher than the upper range of the physiological serum zinc level. Kinetic analysis of uptake at 1 min in SMMV from term placenta showed similar Km values (mean: 6.9+/-0.6 micromol/L) for different levels of maternal serum zinc. However, Vmax was higher (p < 0.05) in SMMV from mothers with serum zinc lower than 7.6 micromol/L compared to those with higher serum zinc levels (35.8+/-1.6 and 26.6+/-1.6 nmol 65Zn/mg protein/min, respectively). Km values were similar in term (>37 wk of gestation) and preterm (20-25 wk of gestation) placentas, whereas Vmax was higher (p < 0.05) in the preterm (34.3+/-1.6 nmol Zn/mg protein/min) compared to term placentas from mothers with serum zinc levels above 7.6 micromol/L. These results suggest that whereas afffinity for zinc was not altered with gestational age or maternal serum zinc levels, zinc-uptake capacity in human placenta is influenced both by gestational age and by low levels of maternal serum zinc in order to ensure an adequate maternal-fetal zinc transfer.  相似文献   

10.
We determined the trans effects of extracellular reduced glutathione (GSH) on the rate of efflux of endogenous labeled GSH from freshly isolated rat hepatocytes. The presence of GSH (10 mM) in the medium significantly stimulated the fractional rate of efflux of [35S]GSH from 5.2 to 12.6%/15 min (p < 0.01). This effect was concentration-dependent, had sigmoid type of kinetics (D50 of 0.32 mM), and was reversible upon removal of external GSH. trans-Stimulation (counter-transport) was also observed with 5 mM oxidized glutathione (GSSG) and ophthalmic acid (fractional [35S] GSH efflux: 13.4% +/- 4.1 and 8.8% +/- 2.3 in 15 min, respectively, compared with control: 4.7 +/- 2.5/15 min). Bromosulphthalein-glutathione (BSP-GSH, 5 mM) in Krebs buffer inhibited the fractional [35S]GSH efflux (1.1%/15 min), whereas in Cl(-)-free buffer, GSH efflux was stimulated (14.2%/15 min) compared with control. trans-Stimulation was independent of chloride. BSP-GSH cis-inhibited and trans-stimulated the initial rate of GSH transport in basolateral-enriched membrane vesicles (bLPM) but not in canalicular-enriched membrane vesicles (cLPM). gamma-Glutamyl compounds also cis-inhibited and trans-stimulated GSH transport in bLPM vesicles. GSH-depleted hepatocytes incubated with 10 mM [35S]GSH accumulated more GSH than repleted cells, but the initial rate of uptake of radioactivity was faster in repleted cells. In contrast, repleted hepatocytes incubated with tracer or 50 microM [35S]GSH did not take up GSH. Thus, the sinusoidal membrane GSH transporter exhibits low affinity kinetics with sigmoid features for both GSH uptake and trans-stimulation of efflux, explaining the lack of uptake of GSH at low physiologic extracellular concentrations. Therefore, our findings support and explain the widely held view that GSH transport is unidirectional under physiologic conditions. However, the efflux of GSH may also occur in exchange for the uptake of organic anions and gamma-glutamyl compounds.  相似文献   

11.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

12.
The mechanism of zinc (Zn) uptake by microvillous membrane vesicles prepared from human term placenta has been studied. The uptake was complex, with two processes being identified. In the first process, uptake was rapid, reaching equilibrium within 2 min, and was temperature dependent, with a Q10 of 1.5. Equilibrium Zn levels were sensitive to osmotic pressure, with Zn binding at infinite osmolarity being 69% iso-osmotic value. The uptake was saturable, with a Vmax of 58 +/- 2 nmol/mg protein/min and an apparent Kt of 128 +/- 13 microM. Uptake was inhibited by increasing extravesicular K+ concentration, dropping from 0.91 +/- 0.03 nmol/mg/min at 0 extravesicular K+ to 0.47 +/- 0.03 at an extravesicular K+ concentration of 150 mM ([Zn] = 1.0 microM). In the presence of both valinomycin, an electrogenic ionophore, and nigericin, an electroneutral exchanger, an outwardly directed K+ gradient stimulated Zn uptake. Similarly, preloading vesicles with Zn and imposing an inward gradient resulted in a temperature dependent efflux of Zn. The data suggest that there is a K+ dependent Zn transporter in vesicle membranes, and we suggest that the evidence is biased in favour of a Zn/K+ exchanger rather than Zn being dependent on the membrane potential.  相似文献   

13.
We studied the binding of fluorescein-labeled annexin V (placental anticoagulant protein I) to small unilamellar phospholipid vesicles at 0.15 M ionic strength as a function of calcium concentration and membrane phosphatidylserine (PS) content. As the mole percentage of PS in the membrane increased from 10 to 50%, the stoichiometry of binding decreased hyperbolically from 1100 mol phospholipid/mol annexin V to a limiting value of 84 mol/mol for measurements made at 1.2 mM CaCl2. Over the same range of PS content, Kd remained approximately constant at 0.036 +/- 0.011 nM. A similar hyperbolic decrease in stoichiometry was observed with vesicles containing 10 or 20% PS when the calcium concentration was increased from 0.4 to 10 mM. Thus, the density of membrane binding sites is strongly dependent on the membrane PS content and calcium concentration. The effect of calcium on annexin V-membrane binding is proposed to be due to the formation of phospholipid-calcium complexes, to which the protein binds, rather than to an allosteric effect of calcium on protein-phospholipid affinity.  相似文献   

14.
Glucose-6-phosphate dehydrogenase (G-6-PD) is the first enzyme in the pentose phosphate pathway. Cadmium is a toxic heavy metal that inhibits several enzymes. Zinc is an essential metal but overdoses of zinc have toxic effects on enzyme activities. In this study G-6-PD from lamb kidney cortex was competitively inhibited by zinc both with respect to glucose-6-phosphate (G-6-P) and NADP+ with Ki values of 1.066 +/- 0.106 and 0.111 +/- 0.007 mM respectively whereas cadmium was a non-competitive inhibitor with respect to both G-6-P and NADP+ Ki values of 2.028 +/- 0.175 and 2.044 +/- 0.289 mM respectively.  相似文献   

15.
Chronic metabolic acidosis increased the Na+-H+ exchange activity in isolated renal brush-border membrane vesicles. Treatment altered the initial rate of Na+ uptake by increasing Vm (acidotic, 15.3 +/- 0.7 nmol of Na+ X mg-1 X 2 s-1; normal, 11.3 +/- 0.9 nmol of Na+ X mg-1 X 2 s-1), and not the apparent affinity KNa+ (acidotic, 10.2 +/- 0.5 mM; normal 10.2 +/- 0.6 mM). Metabolic acidosis resulted in the proportional increase in 1 mM Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and acidotic rats. When the data were analyzed by the Hill equation, it was found that metabolic acidosis did not change the n (acidotic, 1.33 +/- 0.13; normal, 1.43 +/- 0.07) or the K'H+ (acidotic, 0.27 +/- 0.05 microM; normal, 0.28 +/- 0.06 microM), but increased the apparent Vm (acidotic, 1.10 +/- 0.08 nmol of Na+ X mg-1 X 2 s-1; normal, 0.81 +/- 0.07 nmol of Na+ X mg-1 X 2 s-1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and acidotic animals was not influenced by membrane potential. We conclude that metabolic acidosis leads to either an increase in the number of functioning exchangers or an increase in the turnover rate of the limiting step in the exchange.  相似文献   

16.
1. ATP-dependent calcium uptake by a rabbit brain vesicular fraction (microsomes) was studied in the presence of phosphate or oxalate. These anions, which are known to form insoluble calcium salts, increased the rate of calcium uptake and the capacity of the vesicles for calcium accumulation. 2. The degree of activation depended on the concentration of phosphate or oxalate. Under optimal conditions, phosphate promoted a 5-fold increase in the amount of calcium stored at steady state. This level was 200-250 nmol Ca-2+/mg protein. 3. Initial rate of calcium uptake followed Michaelis-Menten kinetics with an apparent Km for calcium of 6.7-10-minus 5 M and a V of 44 nmol/min per mg protein. Optimal pH was 7.0. With 2 mM ATP, optimal Mg-2+ concentration was 2 mM. 4. Dintrophenol and NaN3 inhibited calcium uptake in a mitochondria-enriched fraction but not in the microsomal fraction. 5. Calcium uptake activity was compared in the six subfractions prepared from the whole microsomal fraction by means of a sucrose density gradient fractionation. 6. The Mg-2+-dependent ATPase activity of brain microsomes was activated by calcium. Maximal activation was attained with 100 muM CaCl2. Greater calcium concentrations caused a progressive inhibition. 7. The data suggest that the ATP-dependent calcium uptake in brain microsomes, as in muscle microsomes, is brought about by an active transport process, calcium being accumulated as a free ion inside the vesicles.  相似文献   

17.
Calcium (Ca(2+)) transport by the distal tubule (DT) luminal membrane is regulated by the parathyroid hormone (PTH) and calcitonin (CT) through the action of messengers, protein kinases, and ATP as the phosphate donor. In this study, we questioned whether ATP itself, when directly applied to the cytosolic surface of the membrane could influence the Ca(2+) channels previously detected in this membrane. We purified the luminal membranes of rabbit proximal (PT) and DT separately and measured Ca(2+) uptake by these vesicles loaded with ATP or the carrier. The presence of 100 microM ATP in the DT membrane vesicles significantly enhanced 0.5 mM Ca(2+) uptake from 0.57 +/- 0.02 to 0.71 +/- 0.02 pmol/microg per 10 sec (P < 0. 01) in the absence of Na(+) and from 0.36 +/- 0.03 to 0.59 +/- 0.01 pmol/microg per 10 sec (P < 0.01) in the presence of 100 mM Na(+). This effect was dose dependent with an EC(50) value of approximately 40 microM. ATP action involved the high-affinity component of Ca(2+) transport, decreasing the Km from 0.08 +/- 0.01 to 0.04 +/- 0.01 mM (P< 0.02). Replacement of the nucleotide by the nonhydrolyzable ATPgammas abolished this action. Because ATP has been reported to be necessary for cytoskeleton integrity, we also investigated the effect of intravesicular cytochalasin on Ca(2+) transport. Inclusion of 20 microM cytochalasin B decreased 0.5 mM Ca(2+) uptake from 0.33 +/- 0.01 to 0.15 +/- 0.01 pmol/microg per 10 sec (P< 0.01). However, when both 100 microM ATP and 20 microM cytochalasin were present in the vesicles, the uptake was not different from that observed with ATP alone. Neither ATP nor cytochalasin had any influence on Ca(2+) uptake by the PT luminal membrane. We conclude that the high-affinity Ca(2+) channel of the DT luminal membrane is regulated by ATP and that ATP plays a crucial role in the integrity of the cytoskeleton which is also involved in the control of Ca(2+) channels within this membrane.  相似文献   

18.
ATP-driven calcium uptake was studied in basal-lateral membranes and in microsomal fractions, isolated from pig kidney cortex. The uptake is strongly enhanced in conditions where calcium inside the vesicles is precipitated by oxalate (5 mM) or phosphate (40 mM). Both anions were equally effective for the stimulation of calcium uptake in the microsomes but oxalate was less effective than phosphate in the basal-lateral membrane fraction. The active calcium pumps in the renal basal-lateral and microsomal fractions are different transport ATPases characterized by phosphorylated intermediates of 135 kDa and 115 kDa respectively. The subcellular distribution of the 135 kDa and 115 kDa phosphointermediates, reflects the distribution of typical marker enzymes for the basal-lateral membrane and for the endoplasmic reticulum. The calmodulin binding to the 135 kDa polypeptide as estimated by 125I-labelled calmodulin overlay, can be used as a specific marker for the basal-lateral plasma membrane calcium pump.  相似文献   

19.
Membrane vesicles, isolated from osmotic lysates of Azotobacter vinelandii spheroplasts in Tris-acetate buffer, rapidly accumulate calcium in the presence of an oxidizable substrate. The addition of D-lactate to vesicles increases the rate of calcium uptake by 34-fold; L-malate, NADH, NADPH, and reduced phenazine methosulfate are nearly as effective as lactate. The intravesicular calcium pool which accumulates under these conditions is rapidly discharged by isotopic exchange or in the presence of respiratory inhibitors, uncouplers, or EGTA. The uptake rates for calcium follow Michaelis-Menten kinetics yielding a Km of 48 microM and a V max of 45 nmoles/min/mg membrane protein. Initial rates of EGTA-induced calcium efflux also follow saturation kinetics, giving a V max identical to that for calcium entry; but the Km for exodus is 14 mM, assuming that free calcium accumulates in vesicles. The difference in the affinity of calcium for the entry and exit processes observed during respiration is sufficient to account for the estimated 150-fold calcium concentration gradient achieved under steady-state conditions. The uptake system is specific for calcium as opposed to other cations, but zinc and lanthanum are effective competitors. Calcium uptake is blocked when electron is inhibited by exposure of vesicles to p-chlormercuriphenylsulfonate, hydroxyquinoline-N-oxide, or cyanide, or under anoxic conditions. Divalent cation ionophores (A23187 and X537A) and proton ionophores (CCP and gramicidin D) also block calcium transport effectively. The electrogenic potassium ionophore valinomycin has no effect on lactate-dependent calcium uptake in the presence of potassium; but ionophores which induce electroneutral exchange of protons for sodium or potassium (monensin and nigericin, respectively) did block calcium transport in the presence of the appropriate cation. The fluorescence intensity of quinacrine (an amine probe) in the presence of A. vinelandii membrane vesicles is reduced by 25% on addition of lactate; the quenching is blocked by CCP. This indicates that a pH gradient (inside acid) is developed across the vesicle membrane during lactate oxidation. These results indicate that these membrane preparations contain vesicles of inverted topology (with respect to the intact cell) and suggest that calcium transport occurs by means of electroneutral calcium/proton antiport.  相似文献   

20.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号