首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prepubertal gilts given 750 IU pregnant mares′ serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation fail to ovulate when 10 mg/kg indomethacin (INDO) is injected 24 h after hCG administration. This study examines the effects of administration of exogenous prostaglandins F and E2 (PGF and PGE2) alone or in combination, and at various times prior to the expected time of ovulation, on the INDO blockade of ovulation in PMSG/hCG-treated gilts. Occurrence of ovulation was determined by visual observation at laparotomy 48 h after hCG. When 5 mg or 10 mg PGF was injected at each of 38, 40 and 42 h after hCG injection, 63% and 79%, respectively, of preovulatory follicles ovulated. In contrast, injection of 5 mg PGE2 or 5 mg PGE2 plus 5 mg PGF induced ovulation in 0% and 24% of preovulatory follicles, respectively. In control groups, 100% of folicles in PMSG/hCG-treated gilts ovulated whereas none did so in PMSG/hCG/INDO-treated animals. These results indicate that administration of PGF can induce ovulation in the PMSG/hCG/INDO-treated prepubertal gilt and suggest that PGE2 is ineffective and may be antagonistic to PGF in overcoming the ovulation blocking effect of INDO.  相似文献   

2.
A surge of LH during the follicular phase triggers multiple pathways, including progesterone and prostaglandin synthesis before culminating in ovulation. Progesterone has been shown to be involved in the ovulatory process in many species. In prepuberal gilts treated with PMSG/hCG the follicular progesterone level has been shown to increase sharply before ovulation. This study was conducted to investigate whether premature elevation of progesterone can accelerate the ovulatory process in Large White PMSG/hCG-treated prepuberal gilts. Fifty-four Large White gilts were treated with 1000 IU, i.m. PMSG to stimulate follicular growth, followed 72 h later by 500 IU, i.m. hCG to induce ovulation. Gilts in the treatment group (n = 27) were given progesterone intermuscularly at 24 and 36 h after hCG. Ovaries were exteriorized to observe ovulation points during laparotomy under general anesthesia at 38 to 50 h after hCG. Ovulation in both groups commenced by 40.05 h after hCG and was completed by 47.71 h in the control group and by 42.87 h after hCG in the treated group. Progesterone shortened (P < 0.01) ovulation time by 4.84 h and the time required (P < 0.01) for the median proportion of follicles to ovulate (40.7 vs 43.5 h after hCG). Progesterone also increased (P < 0.01) the plasma progesterone concentration without altering follicular progesterone concentration.  相似文献   

3.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   

4.
The avidin-biotin immunoperoxidase method and antisera to purified porcine relaxin were used to localize relaxin in sections of follicles from pregnant mare's serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG)-primed pigs during preovulatory development. Prepubertal pigs were treated i.m. with PMSG (750 IU) and 72 h later with hCG (500 IU) to induce follicular development and ovulation. Follicles were collected from untreated gilts or from gilts 24, 48, 60, 72, 84, 96, or 108 h after PMSG treatment. Light immunostaining in the theca interna was observed early in follicular development, at 48 and 60 h post-PMSG. At 72 h post-PMSG, relaxin immunostaining in the theca interna of the preovulatory follicle was more intense. After hCG treatment, the intense thecal immunostaining persisted and was apparent 84 and 96 h after PMSG. At about 6 h prior to expected ovulation (108 h post-PMSG), there was thinning of the follicle wall and a reduction in relaxin immunostaining in the theca interna. Immunoactive relaxin was not detected in follicles from untreated gilts, follicles 24 h post-PMSG, small healthy or atretic follicles, or in granulosa cells, theca externa or ovarian stroma, at any of the time points studied. These studies support the hypothesis that the theca interna is the primary source of follicular relaxin and provide further evidence for a paracrine role for relaxin in the ovulatory process.  相似文献   

5.
Prepuberal gilts were treated with pregnant mare serum gonadotropin (PMSG) to study the effects of its dosage on ovulation rate, fertilization rate after artificial insemination, embryo viability, and rate of development and incidence of chromosome abnormalities in Day-4 embryos. Gilts received 750 IU, 1250 IU or 1500 IU of PMSG, followed 72 h later by 500 IU human chorionic gonadotropin (hCG). Gilts were inseminated 28 to 30 h following the hCG injection, and resulting embryos were collected on Day 4 post ovulation. Ovulation rate was higher in the 1250 IU group than in the 1500 IU group or the 750 IU group. The 1500 IU dose caused excessive stimulation of the ovary, resulting in the occurrence of large (>10mm diameter) unovulated follicles, reduced fertilization rate and low embryo recovery rate. There was no difference in the incidence of chromosome abnormalities among the three groups, although the 1500 IU group had higher embryonic mortality than the two lower dose groups. A dose of 1250 IU PMSG increased ovulation rate above that achieved by 750 IU and, therefore, increased the number of oocytes or embryos available for transfer or for other studies, without sacrificing embryo viability or increasing the incidence of chromosome abnormalities.  相似文献   

6.
Prostaglandin production in vitro by theca and granulosa cells isolated from prepubertal pig ovaries was quantified in order to investigate the role of prostaglandins in intrafollicular function. Prepubertal gilts were slaughtered without treatment (O h, control) or treated with 1000 IU pregnant mare's serum gonadotropin (PMSG) and slaughtered at 36 or 72 h, or at 75 h following treatment with 500 IU of hCG at 72 h. Theca and granulosa cells were isolated from preovulatory follicles and cultured for 24 h alone or with follicle-stimulating hormone (FSH) or luteinizing hormone (LH). In vitro accumulation of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) was measured by radioimmunoassay. On a per follicle basis theca produced more of each prostaglandin (approx. 10-fold) than granulosa at each stage of follicular development; production by each tissue type increased with development of the follicle, responding to administration of gonadotropin (PMSG) in vivo. Neither tissue type was generally responsive to further gonadotropin stimulation in vitro. However, production of PGE2 by granulosa cells was increased by addition of gonadotropin, particularly LH, in vitro, with the greatest response observed in tissue obtained at 36 and 72 h after PMSG. There were no functional correlates between prostaglandin production and steroidogenesis by either tissue type and we conclude that prostaglandins do not have an obligatory role in follicular steroidogenesis. However, these data provide additional circumstantial evidence for a role of PGE2 in granulosa cell luteinization, and possibly in ovulation. The data also indicate that prostaglandins derived from thecal tissue in relatively large quantities may play an important role in ovulation.  相似文献   

7.
Genetic engineering of miniature pigs has facilitated the development of numerous biomedical applications, such as xenotransplantation and animal models for human diseases. Manipulation of the estrus is one of the essential techniques for the generation of transgenic offspring. The purpose of the present study was to establish a useful method for induction of the estrus in miniature gilts. A total of 38 pubertal miniature gilts derived from 4 different strains were treated with exogenous gonadotropins. Estrus and ovulatory response were examined after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as 200 IU PMSG and 100 IU hCG, 300 IU PMSG and 150 IU hCG, or 1,500 IU PMSG only, followed by 100, 150 or 750 IU hCG 72 h later, respectively. The optimal protocol was determined to be the combination treatment of 200 IU PMSG and 100 IU hCG followed by 100 IU hCG. The administration of 200 IU PMSG and 100 IU hCG was effective in inducing estrus regardless of the strain, although there was a strain difference in the ovulatory response. These results indicate that treatment with a low-dose combination of PMSG and hCG provides one of the simplest methods for induction of estrus and ovulation in pubertal miniature pigs.  相似文献   

8.
One hundred and thirteen crossbred gilts were used in three experiments to examine the relationship between the pattern or sequence of ovulation and subsequent variation in the morphology of Day 11 embryos. In the first experiment, the percentage of follicles that had ovulated was determined in individual gilts at 26, 30, 34, or 38 h after the onset of estrus (n = 20) and 39, 41, 43, 45, or 47 h post-injection of human chorionic gonadotropin (n = 25; hCG, 1000 IU). The second experiment consisted of observing the percentage of follicles ovulated in 52 additional gilts at 34 h after the onset of estrus (Day 0). In the third experiment, the morphological variation among littermate embryos was compared on Day 11 between sham-operated control gilts (n = 8) and gilts whose nonovulated follicles were destroyed by electrocautery (n = 8) on Day 1. Results of these experiments indicated that the pattern of ovulation in gilts was skewed (p less than 0.01). Ovulation, induced with hCG, appeared to occur in a majority of follicles during a short period of time, whereas the remaining ovulations occurred over a longer interval. Of the 57 gilts observed at 34 h after natural estrus, ovaries of 25 gilts contained corpora hemorrhagica (CH) and follicles; one gilt had 1 CH and 17 follicles, and 24 others had 10-17 CH with 1-4 follicles remaining. Destruction of these nonovulated follicles resulted in a more (p less than 0.01) uniform group of Day 11 embryos and with fewer (p less than 0.05) small embryos. These data demonstrated that the pattern of ovulation may affect morphological variation in embryonic development such that some of the later ovulating follicles may represent smaller embryos within a litter.  相似文献   

9.
The objective of this study was to compare recovery of pronuclear and 2-cell ova from F2 50% Meishan (MX) gilts versus F1 White line (L42) gilts. Sexually mature MX and L42 gilts were allocated across 2 treatments: Super (MX:n=9; L42:n=10) and Control (MX:n=6; L42:n=5) in a 2 x 2 factorial experiment. Allyl trenbolone (AT) was used to synchronize estrus in all gilts. Super gilts were given pregnant mare serum gonadotropin (PMSG: 1250 IU) at 24 h after AT withdrawal. Eighty-five hours after PMSG administration, all Super gilts received 750 IU of human chorionic gonadotropin (hCG). Super gilts which exhibited estrus within 24 h of hCG administration (MX-Super: n=6; L42-Super: n=5) and all Control gilts were bred naturally to Line 3 boars at 12 and 24 hours after the onset of estrus. Ova were recovered from Super gilts between 60 and 64 h after hCG and Control gilts at 48 h after the onset of estrus. All 1- and 2-cell ova were centrifuged at 15000 x g and observed using differential interference contrast microscopy. The mean ovulation rate was greater (P<0.05) for both MX-Super and L42-Super gilts in comparison to their respective Control groups. No differences were detected in the mean ovulation rate (P>0.38) or the mean number of 1- and 2-cell ova recovered (P>0.50) between MX-Super and L42-Super gilts. The proportion of 1- and 2-cell ova which exhibited visible pronuclei or nuclei was also similar among MX-SUPER and L42-SUPER gilts. This study demonstrates that MX gilts respond/perform comparably to L42 gilts with respect to estrus synchronization, superovulation, ova yield, and the ease of visibility of pronuclei or nuclei in the ova.  相似文献   

10.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

11.
Prepubertal gilts were treated with 750 IU pregnant mares' serum gonadotropin (PMSG) and 72 h later with 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. Dispersed granulosa (GC) and theca interna (TIC) cells were prepared by microdissection and enzymatic digestion from follicles obtained 36, 72 and 108 h after PMSG treatment and incubated for up to 6 h in a chemically defined medium in the presence or absence of arachidonic acid, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and indomethacin. Production of prostaglandin E2 (PGE) and prostaglandin F2 alpha (PGF) was measured by radioimmunoassay. Both GC and TIC had the capacity to produce prostaglandins, with production by each cell type increasing markedly with follicular maturation. PGE was the major prostaglandin produced by both cellular compartments. Only PGE production by GC was consistently enhanced by addition of arachidonic acid to the incubation medium. Neither cell type was responsive to FSH and LH in vitro. Indomethacin inhibited the production of PGE and PGF by both cell types. These results provide convincing evidence for an intrafollicular source of prostaglandins and indicate that both cellular compartments contribute significantly to the increased production of prostaglandins associated with follicular rupture.  相似文献   

12.
The objective of this study was to examine the response of anestrous gilts to injections of pregnant mare's serum gonadotrophin (PMSG) alone or in combination with human chorionic gonadotrophin (hCG). One hundred and eighty gilts which had failed to exhibit estrus by about 33 wk of age were given one of the following treatments: no injection, 500 IU PMSG, 1000 IU PMSG or 400 IU PMSG + 200 IU hCG. A greater number of gilts injected with 1000 IU PMSG exhibited estrus within nine days of treatment than control gilts (21/37 vs 13/41, X(2) = 5.0, P<0.05). In addition, gilts injected with 1000 IU PMSG exhibited oestrus significantly earlier than gilts receiving the other treatments. In comparisons of the proportion of gilts ovulating within 9 d of treatment and the treatment-to-ovulation interval, there were no significant differences between the three exogenous hormone treatments. There was also no significant effect of treatment on farrowing rate or subsequent litter size. The results of our study indicate that treatment of anestrous gilts with 1000 IU PMSG effectively induces ovulation and fertile estrus. Inadequate expression of estrus often accompanied the ovulation induced by the lower dosages of PMSG used with and without hCG in this experiment.  相似文献   

13.
Prepubertal gilts were treated with 750 IU pregnant mare's serum gonadotropin (PMSG) and 72 h later with 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. Dispersed granulosa cells (GC) and theca interna cells (TC) from follicles of gilts 72 h (GC-72 and TC-72, respectively) and 108 h (GC-108 and TC-108 h, respectively) after PMSG treatment were cultured for 0, 12, 24, and 36 h in medium with or without luteinizing hormone (LH), dibutyryl cyclic adenosine 3',5'-monophosphate [Bu)2cAMP), calcium ionophore (A23187), and/or arachidonic acid (AA), and the production of prostaglandin E2 (PGE) and prostaglandin F2 alpha (PGF) was measured by radioimmunoassay. TC-72 was the principal source of PGs 72 h after PMSG. At 108 h, the production of PGE and PGF by GC was increased 10- and 30-fold, respectively, whereas corresponding increases by TC were 2-fold. LH and A23187 significantly stimulated PGE and PGF production by both GC-72 and TC-72, but only thecal PG production was stimulated by (Bu)2cAMP. LH had minimal or no effect on PG production by GC-108 and TC-108, but A23187 (GC-108, TC-108) and (Bu)2cAMP (TC-108) were stimulatory. Basal PG production by GC-72, GC-108, and TC-108 was stimulated by AA. However, production by GC and TC cultured in medium containing AA and LH, A23187, or (Bu)2cAMP was not different from that produced by AA alone. These findings suggested that GC and TC can synthesize PGs in vitro, but AA availability is rate-limiting in GC. After exposure to hCG in vivo, the capacity of both cell types to produce PGs is increased but is limited by AA availability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The present study was designed to examine mechanism(s) of the anti-ovulatory action of the anti-androgen, hydroxyflutamide (OH-F). Prepubertal rats were treated with 4 IU pregnant mare's serum gonadotropin (PMSG) (day -2) to induce first estrus and ovulation. They received OH-F in sesame oil or oil alone at 08:00 and 20:00 h on day 0 (the day of proestrus) and ovulations were assessed on the morning of day 1. Eighty-three percent of control animals ovulated with a mean of 7.7 +/- 1.1 corpora lutea per rat. Hydroxyflutamide blocked ovulation in all but 2 of the 12 rats receiving this drug alone. All of OH-F treated rats that received 5 and 25 IU human chorionic gonadotropin (hCG) ovulated with means +/- SEM of 9.1 +/- 0.1 and 7.3 +/- 1.4 corpora lutea per rat, respectively. The dose of 0.2 IU hCG was essentially ineffective, while the effect of 1.0 IU hCG was intermediate. At the dose of 20 ng and above (100 and 500 ng) luteining hormone-releasing hormone (LHRH) completely overcame the ovulation blockade in the OH-F treated animals, while a 4-ng dose was ineffective. At 18:00 h on the day of proestrus, serum LH levels in control animals were 17.56 +/- 2.60 ng/mL, which were 920% above basal levels (1.90 +/- 0.13) indicating a spontaneous LH surge. This surge was suppressed in OH-F treated rats. Injection of LHRH, at the dose of 20 ng and above, reinstated the LH release in OH-F treated animals. Thus, the anti-androgen, OH-F, inhibits ovulation in PMSG-treated immature rats through its interference with the preovulatory LH surge; the inhibition can be reversed by hCG or LHRH. Hydroxyflutamide does not appear to interfere at the level of the pituitary, but may have direct action at the hypothalamic and (or) extrahypothalamic sites involved in the generation of positive feedback signals that control LH release.  相似文献   

15.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

16.
Eighty gilts were utilized to determine whether zeranol implants could maintain hCG-induced corpora lutea (CL) in peripubertal gilts and to examine the effects of a Zeranol implant on fetal development. Crossbred gilts (171+/-0.3 days of age, 109.1+1.4 kg) were blocked by weight and ancestry to control (n=40) or treatment (n=40) groups. To induce ovulation and CL maintenance, treated gilts received 500 IU of hCG i.m. and a Zeranol ear implant (Ralgro, 36 mg; day 0). All gilts were checked once daily for estrus with a mature boar from days 3-58 of the experiment. On day 42, treated gilts received two 10 mg injections of Lutalyse (PGF(2)alpha) spaced 6 h apart. Treated gilts not displaying estrus within 7 days of PGF(2)alpha received two additional 10 mg of PGF(2)alpha spaced 6 h apart on day 49. On days 44-58, gilts detected in estrus were inseminated twice, 24 h apart with pooled semen via AI. Blood samples were obtained on days 0, 7, 18 and 42 and analyzed for serum progesterone (P(4)). Bred gilts were slaughtered on days 58-62 of gestation. Ovulation, as determined by serum concentrations of P(4) on day 7 of the experiment, was induced by hCG in 79.5% of treated gilts. Zeranol implants, however, failed to increase (P>0.05) the proportion of gilts available for breeding (treated, 21/39; control, 18/40). Of gilts inseminated on days 44-58, 16/21 treated gilts and 16/18 control gilts were pregnant at slaughter on days 58-62 of gestation. Number of fetuses (7.5 versus 12), fetal weight (83 versus 121 g), fetal length (117 versus 132 mm) and fetal survival (45% versus 78%) were reduced (P<0.001) by Zeranol implants. These data indicate that treatment of peripubertal gilts with a 36 mg Zeranol implant did not increase the proportion of gilts available for breeding while causing deleterious effects upon the fetuses.  相似文献   

17.
Twenty prepuberal (P) gilts, 56.5 +/- 1.1 kg body weight, were induced to ovulate with 1000 IU of pregnant mare's serum gonadotropin followed 72 h later by 500 IU of human chorionic gonadotropin (hCG), and bred by artificial insemination (AI) with 50 ml fresh pooled boar semen the day after hCG treatment (Day 0). Eighteen mature (M) gilts, 120.6 +/- 1.7 kg body weight, were bred by AI each day of estrus using pooled semen from the same boars (onset of estrus = Day 0). One-half of each group was fed the prostaglandin (PG) synthesis inhibitor indomethacin (IND), at 10 mg/kg body weight, or control (C) feed twice daily on Days 10 to 25. Blood samples taken by venipuncture on Days 10, 15, 20 and 25 were quantitated for progesterone (P4) and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by radioimmunoassay. Ovaries were examined on Day 26. All M-C gilts were pregnant, whereas 3 of 9 M-IND gilts (P less than 0.05) and none of the P gilts (P less than 0.01) were pregnant. Three of the 6 nonpregnant M-IND gilts displayed estrus on Day 21. The 3 remaining M-IND gilts had maintained corpora lutea (CL) on Day 26. Only corpora albicantia were present in P gilts on Day 26. Serum P4 concentrations for M-C gilts, nonpregnant M-IND gilts with maintained CL, and pregnant M-IND gilts were not different. Serum P4 for all nonpregnant gilts in which CL had regressed by Day 25 decreased to less than 5 ng/ml on Day 20.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Estrus was synchronized in 45 gilts by ingestion of Zinc-Methallibur in the feed for 15 d. On Day 16 each gilts was treated with PMSG (1200 IU i.m.) followed in 72 h by hCG (500 IU i.m.). Gilts were inseminated 24 and 36 h after the onset of estrus followed by slaughter of groups (n = 4 or 5) at 40 h, 44 h, 48 h, 52 h, 56 h, 60 h and 64 h after hCG injection. Ovaries were evaluated macroscopically and oocytes/embryos were recovered by flushing the oviducts. The ovulation rate increased from 38% to 87% from 40 to 45 h and remained constant thereafter. At 40 h, 36% of oocytes were penetrated by a single spermatozoon. The rate of fertilization increased from 36% (40 h) to 59% (44 h), to 65% (48 h), to 73% (52 h), to 76% (56 h), 80% (60 h) and to 64% (64 h). At 40 h all fertilized ova contained a decondensed sperm head. After another 4 to 8 h early pronuclei were common, and 52 h after hCG treatment opposed pronuclei were predominant. The first cleavages were recorded 64 h after hCG injection.  相似文献   

19.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

20.
The purpose of this work was to investigate the effects of gonadotropin on the production capacity of ovarian 13,14-dihydro-prostaglandin F2-alpha (13,14H2-PGF2 alpha) and whether or not this capacity had any relation to the process of ovulation in rat. To induce the first ovulation, immature rats were injected subcutaneously with PMSG (5 IU/rat) at 8:00 at 26 days of age and some of these rats were followed by an intraperitoneal injection of hCG (10 IU/rat) at 57 hrs after PMSG treatment. The 13,14H2-PGF2 alpha production capacity was unchanged as compared with vehicle control until 57 hrs after PMSG treatment. However, the capacity showed a striking increase at 60 hrs after PMSG treatment. A maximal increase of about 7 fold was observed at 9 hrs after hCG injection just before ovulation. The production capacity of the Graafian follicle (GF) and the part (WO-GF) of the whole ovary (WO) from which the GF is removed at 2:00 on day 29 and the capacity of early corpus luteum at 8:00 on day 29 was greater than that of GF and WO-GF at 0:00 on day 29. These results suggest that the 13,14H2-PGF2 alpha production capacity in rat ovary is regulated by gonadotropin and is closely associated with the process of ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号