首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The administration of ethionine results in a rapid and marked increase in rat liver cysteine desulfhydrase activity. However, this antimetabolite of methionine does not affect the hepatic levels of homoserine dehydratase and gamma-cystathionase.  相似文献   

2.
Rat liver cystathionine-gamma-lyase [L-cystathionine cysteinelyase (deaminating), EC 4.4.1.1] catalyzes the formation of pyruvic acid, ammonia, and carboxymethylhydrodisulfide from S-(carboxymethylthio)cysteine (CMTC). As judged by pyruvic acid production, the optimal pH is 8.3 in tris-HCl buffer and the Km is 2.9 mM. A possible mechanism of CMTC cleavage by cystathionase is proposed.  相似文献   

3.
Dual biosynthetic pathways diverge from prephenate to L-phenylalanine in Erwinia herbicola, the unique intermediates of these pathways being phenylpyruvate and L-arogenate. After separation from the bifunctional P-protein (one component of which has prephenate dehydratase activity), the remaining prephenate dehydratase activity could not be separated from arogenate dehydratase activity throughout fractionation steps yielding a purification of more than 1200-fold. The ratio of activities was constant after removal of the P-protein, and the two dehydratase activities were stable during purification. Hence, the enzyme is a cyclohexadienyl dehydratase. The native enzyme has a molecular mass of 73 kDa and is a tetramer made up of identical 18-kDa subunits. Km values of 0.17 mM and 0.09 mM were calculated for prephenate and L-arogenate, respectively. L-Arogenate inhibited prephenate dehydratase competitively with respect to prephenate, whereas prephenate inhibited arogenate dehydratase competitively with respect to L-arogenate. Thus, the enzyme has a common catalytic site for utilization of prephenate or L-arogenate as alternative substrates. This is the first characterization of a purified monofunctional cyclohexadienyl dehydratase.  相似文献   

4.
The activity of three enzymes, aspartokinase, homoserine dehydrogenase, and homoserine kinase, has been studied in the industrial strainSaccharomyces cerevisiae IFI256 and in the mutants derived from it that are able to overproduce methionine and/or threonine. Most of the mutants showed alteration of the kinetic properties of the enzymes aspartokinase, which was less inhibited by threonine and increased its affinity for aspartate, and homoserine dehydrogenase and homoserine kinase, which both lost affinity for homoserine. Furthermore, they showed in vitro specific activities for aspartokinase and homoserine kinase that were higher than those of the wild type, resulting in accumulation of aspartate, homoserine, threonine, and/or methionine/S-adenosyl-methionine (Ado-Met). Together with an increase in the specific activity of both aspartokinase and homoserine kinase, there was a considerable and parallel increase in methionine and threonine concentration in the mutants. Those which produced the maximal concentration of these amino acids underwent minimal aspartokinase inhibition by threonine. This supports previous data that identify aspartokinase as the main agent in the regulation of the biosynthetic pathway of these amino acids. The homoserine kinase in the mutants showed inhibition by methionine together with a lack or a reduction of the inhibition by threonine that the wild type undergoes, which finding suggests an important role for this enzyme in methionine and threonine regulation. Finally, homoserine dehydrogenase displayed very similar specific activity in the mutants and the wild type in spite of the changes observed in amino acid concentrations; this points to a minor role for this enzyme in amino acid regulation.  相似文献   

5.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

6.
Matthews  Benjamin F.  Widholm  Jack M. 《Planta》1978,141(3):315-321
Aspartokinase (EC 2.7.2.4), homoserine-dehydrogenase (EC 1.1.1.3) and dihydrodipicolinic-acid-synthase (EC 4.2.1.52) activities were examined in extracts from 1-year-old and 11-year-old cell suspension cultures and whole roots of garden carrot (Daucus carota L.). Aspartokinase activity from suspension cultures was inhibited 85% by 10 mM L-lysine and 15% by 10mM L-threonine. In contrast, aspartokinase activity from whole roots was inhibited 45% by 10 mM lysine and 55% by 10 mM threonine. This difference may be based upon alterations in the ratios of the two forms (lysine-and threonine-sensitive) of aspartokinase, since the activity is consistently inhibited 100% by lysine+threonine. Only one form each of homoserine dehydrogenase and of dihydrodipicolinic acid synthase was found in extracts from cell suspension cultures and whole roots. The regulatory properties of either enzyme were identical from the two sources. In both the direction of homoserine formation and aspartic--semialdehyde formation, homoserine dehydrogenase activities were inhibited by 10mM threonine and 10 mM L-cysteine in the presence of NADH or NADPH. KCl increased homoserine dehydrogenase activity to 185% of control values and increased the inhibitory effect of threonine. Dihydrodipicolinic acid synthase activities from both sources were inhibited over 80% by 0.5 mM lysine. Aspartokinase was less sensitive to inhibition by low concentrations of lysine and threonine than were dihydrodipicolinic acid synthase and homoserine dehydrogenase to inhibition by the respective inhibitors.  相似文献   

7.
p-Fluorophenylalanine-resistant mutants of starch-degrading Bacillus polymyxa ATCC 842, generated by ethyl methanesulfonate mutagenesis followed by incubation with caffeine, overproduced small amounts of l-phenylalanine (l-phe) from starch. A beta-2-thienylalanine-resistant mutant (BT-7) derived from p-fluorophenylalanine mutant (C-4000 FP-4) and resistant to both p-fluorophenylalanine and beta-2-thienylalanine produced 0.5 g of l-phe and 0.15 g of l-tyrosine per liter from 10 g of starch per liter when growing in a minimal medium. trans-Cinnamic acid (CA) was also excreted by both mutants, indicating the possibility of l-phenylalanine ammonia-lyase-induced deamination of l-phe to CA. The amount of l-phe-derived CA detected in BT-7 was less compared with mutant C-4000 FP-4. CA production was induced in the parent only when l-phe was used as a sole nitrogen source. Time of CA production in the two mutants could be delayed by addition of other nitrogen sources, an indication of possible l-phenylalanine ammonia-lyase inhibition or repression. The presence of l-phenylalanine ammonia-lyase in B. polymyxa mutant C-4000 FP-4 was confirmed by assays of cell-free extracts from cells grown in starch minimal medium containing l-phe as the sole nitrogen source. Preliminary studies of the regulation of deoxy-d-arabino-heptulosonate-7-phosphate synthase and prephenate dehydratase in the wild-type strain showed that deoxy-d-arabino-heptulosonate-7-phosphate synthase was subject to feedback inhibition by l-phe, l-tyrosine, and l-tryptophan. Inhibition by each amino acid was to a similar extent singly or in combination at a 0.5 mM level of each amino acid. Prephenate dehydratase was feedback inhibited by l-phe, but not by l-tyrosine or l-tryptophan or both. In the double analog-resistant mutant BT-7, deoxy-d-arabino-heptulosonate-7-phosphate synthase had specific activity similar to that in the wild type, and the enzyme was still subject to feedback inhibition. However, prephenate dehydratase had increased specific activity and it was also insensitive to feedback inhibition by l-phe. The overproduction of aromatic amino acids by BT-7 was thought to be due, at least in part, to deregulation of feedback inhibition of prephenate dehydratase. Chorismate mutase was not subject to feedback inhibition in the wild type and was unaffected in the mutant.  相似文献   

8.
Eight classes of pyridoxal 5'-phosphate dependent enzymes have been investigated in Nippostrongylus brasiliensis in parallel with rat tissues. The range of decarboxylases detected in N. brasiliensis was limited in comparison with rat tissues. N. brasiliensis possessed a highly active L-serine hydroxymethyltransferase, but in contrast with rat liver, 5-aminolevulinic acid synthetase was absent. Similar levels of L-serine and L-threonine dehydratase activities were detected in N. brasiliensis and rat liver, and both organisms lacked L-alanine racemase, L-tryptophan synthetase and L-methionine gamma-lyase. The demonstration of cystathionine beta-synthase and gamma-cystathionase in N. brasiliensis suggests the presence of a functional trans-sulphuration sequence. The substrate specificities of the nematode cystathionine beta-synthase and gamma-cystathionase varied significantly from those of the corresponding mammalian enzymes. Particularly striking was the ability of N. brasiliensis cystathionine beta-synthase to catalyse the non-mammalian 'activated L-serine sulphydrase' reaction (L-cysteine + R-SH----cysteine thioether + H2S). N. brasiliensis and rat liver exhibited comparable abilities to transaminate amino acids via the 2-oxoglutarate: glutamate system.  相似文献   

9.
Two forms of homoserine dehydrogenase exist in the leaves of both barley and pea; one has a large molecular weight and is inhibited by threonine, the other is of smaller molecular weight and insensitive to threonine but inhibited by cysteine. The subcellular localisation of these enzymes has been examined. Both plants have 60–65% of the total homoserine dehydrogenase activity present in the chloroplast and this activity is inhibited by threonine. The low molecular weight, threonine-insensitive form is present in the cytoplasm. Total homoserine dehydrogenase activity from barley leaves showed progressive desensitisation towards threonine with age in a similar manner to that previously described for maize. It was shown that the effect was due to desensitisation of the chloroplast enzyme, and not to an increase in the insensitive cytoplasm enzyme. No corresponding desensitisation to threonine was detected in pea leaves. The different forms of homoserine dehydrogenase could be separated from pea leaves by chromatography on Blue Sepharose; the threonine-sensitive enzyme passed straight through and the threonine insensitive form was bound. A similar separation of the barley leaf isoenzymes was obtained using Matrex Gel Red A affinity columns; in this case however, the threonine-sensitive isoenzyme was bound. In both plants, the threonine insensitive isoenzyme was subject to greater inhibition by cysteine than was the threonine-sensitive isoenzyme.Abbreviation HSDH homoserine dehydrogenase  相似文献   

10.
Aspartate kinase (AK, EC 2.7.2.4) and homoserine dehydrogenase (HSDH, EC 1.1.1.3) have been partially purified and characterised from immature sorghum seeds. Two peaks of AK activity were eluted by anion‐exchange chromatography [diethylaminoethyl (DEAE)‐Sephacel] with 183 and 262 mM KCl, and both activities were inhibited by lysine. Similarly, two peaks of HSDH activity were eluted with 145 and 183 mM KCl; the enzyme activity in the first peak in elution order was shown to be resistant to threonine inhibition, whereas the second was sensitive to threonine inhibition. However, following gel filtration chromatography (Sephacryl S‐200), one peak of AK activity co‐eluted with HSDH and both activities were sensitive to threonine inhibition, suggesting the presence of a bifunctional threonine‐sensitive AK–HSDH isoenzyme with a molecular mass estimated as 167 kDa. The activities of AK and HSDH were studied in the presence of lysine, threonine, methionine, valine, calcium, ethylene glycol bis(2‐aminoethylether)‐N,N,NN′‐tetraacetic acid, calmodulin, S‐adenosylmethionine (SAM), S‐2‐aminoethyl‐l ‐cysteine (AEC) and increasing concentrations of KCl. AK was shown to be inhibited by threonine and lysine, confirming the existence of two isoenzymes, one sensitive to threonine and the other sensitive to lysine, the latter being predominant in sorghum seeds. Methionine, SAM plus lysine and AEC also inhibited AK activity; however, increasing KCl concentrations and calcium did not produce any significant effect on AK activity, indicating that calcium does not play a role in AK regulation in sorghum seeds. HSDH also exhibited some inhibition by threonine, but the majority of the activity was not inhibited, thus indicating the existence of a threonine‐sensitive isoenzyme and a second predominant threonine‐insensitive isoenzyme. Valine and SAM plus threonine also inhibited HSDH; however, increasing concentrations of KCl and calcium had no inhibitory effect.  相似文献   

11.
The effect of cysteine and glutathione on mammalian melanogenesis has been studied. It has been shown that their action is mediated by two different mechanisms. (a) The reaction of the thiol groups with dopaquinone after the tyrosinase-catalyzed oxidation of tyrosine and dopa. This mechanism leads to the formation of sulfhydryl-dopa conjugates and finally sulfur-containing pigments, phaeomelanins instead of eumelanins. This fact might produce an inhibition of melanogenesis due to the slower rate of chemical reactions involved in the polymerization of such thiol-conjugates when compared to that of indoles. (b) The direct interaction between the sulfhydryl compounds and the tyrosinase active site. This interaction may regulate the activity of the enzyme. It is shown that Harding-Passey mouse melanoma tyrosinase is more sensitive to sulfhydryl compounds than mushroom tyrosinase. Cysteine always produces an inhibition of the tyrosinase hydroxylase and dopa oxidase activities of melanoma tyrosinase, this inhibition becoming greater as the cysteine concentration increases. On the other hand, glutathione produces an activation of the tyrosine hydroxylase activity below 3 mM and an inhibition at higher concentrations. The limit between the enzymatic activation and inhibition appears at glutathione concentrations similar to the physiological levels of this compound found in melanocytes. Although the switch from eumelanogenesis to phaeomelanogenesis occurs at much lower concentrations of glutathione, taking into account these data it is discussed that this sulfhydryl compound may regulate not only the type but also the amount of melanin formed inside melanocytes.  相似文献   

12.
Treatment by urea of purified rat liver cystathionase (L-Cystathionine cysteine-lyase (deaminating), EC 4.4.1.1) provoked a similar alteration of two activities of the enzyme, namely cysteine desulfhydration and homoserine deamination. Since the decreases of the two activities were also comparable as a result of chymotrypsin digestion of the enzyme, these observations suggest that the two sites responsible for the one and the other activites are in close proximity. Studies of the effect of derivatives of substrates (S-carboxymethylcyste-ine, S-carboxyethylcysteine, S-carboxymethylhomocysteine and S-carboxyethylhomocysteine) on both activities were performed. All of them inhibited cysteine desulfhydration and homoserine deamination; in several cases, the type of inhibition was also determined. The results are in agreement with the hypothesis that each of the two sites of the active center has, at least, three binding points which "recognise" groupings of substrates or of inhibitors, and this led us to propose a model for the active center. Each site has an -NH-2 binding point, hence the active center has two -NH-2 binding points; therefore, as cystathionase consists of four subunits and contains four molecules of pyriodoxal phosphate, it might be of interest to determine whether the smallest active molecule is the dimer.  相似文献   

13.
Crystalline L-histidine ammonia-lyase of Achromobacter liquidum was prepared with a 24% recovery of the activity. The specific activity of the pure enzyme (63 mumol of urocanic acid min-1 mg-1) is similar to those so far reported for the enzyme from other sources. The purified enzyme appeared to be homogeneous by analytical disc electrophoresis and isoelectric focusing (pI = 4.95). The molecular weight determined by Sephadex G-200 gel filtration is 200000. The optimum pH is 8.2, and the optimum temperature is 50 degrees C. The enzyme showed strict specificity to L-histidine (Km = 3.6 mM). Several histidine derivatives are not susceptible to the enzyme but do inhibit the enzyme activity competitively; the most effective inhibitors are L-histidine methyl ester (Ki = 3.66 mM) and beta-imidazole lactic acid (Ki = 3.84 mM). L-Histidine hydrazide (Ki = 36 mM) and imidazole (Ki = 6 mM) noncompetitively inhibited the enzyme EDTA markedly inhibited enzyme activity and this inhibition were reversed by divalent metal ions such as Mn2+, Co2+ Zn2+, Ni2+, Mg2+, and Ca2+. These results suggest that the presence of divalent metal ions is necessary for the catalytic activity of histidine ammonia-lyase. Sodium borohydride and hydrogen peroxide inhibited the enzyme activity.  相似文献   

14.
L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) of the Rhodotorula aurantiaca strain KM-1 deaminates L-phenylalanine according to the Michaelis-Menten kinetics with K M 1.75 ± 0.44 mM and V max 3.01 ± 0.43 units/mg. The enzyme is competitively inhibited by D-phenylalanine with K i 3.38 ± 0.32 mM. The Michaelis-Menten kinetics was analyzed, the inhibition type (competitive, noncompetitive, and mixed) was identified, and corresponding kinetic parameters were calculated using the computer programs written in Gauss 4.0. PAL was most stable at pH 6.55 and lacked approximately 50% of its activity after incubation at 57°C for 15 min. The yield of L-phenylalanine increased in the presence of mercaptoethanol, sodium ethylenediaminetetraacetate (EDTA), and ascorbic acid. The effects of EDTA and ascorbic acid were additive.  相似文献   

15.
The nephrotoxicity of chlorotrifluoroethylene (CTFE) was examined using isolated rabbit renal tubules suspensions. Exposure of the tubules to CTFE resulted in consumption of CTFE, formation of a glutathione conjugate and inhibition of active organic acid transport. Synthetic cysteine, N-acetylcysteine or glutathione conjugates of CTFE inhibited transport indicating S-conjugation as a possible toxic pathway. 1,2-dichlorovinyl glutathione (DCVG), a model synthetic glutathione conjugate, was used to examine the degradation and toxicity of these conjugates. DCVG inhibited rabbit renal tubule transport in vivo and in vitro. The DCVG was found to be degraded with the evolution of glutamine and glycine to produce the ultimate nephrotoxicant, dichlorovinyl cysteine. Dichlorovinyl cysteine is then bioactivated with the release of ammonia. This sequential degradation explains the latency of DCVG-induced renal transport inhibition relative to dichlorovinyl cysteine. It is now evident that certain halogenated ethylenes are capable of being biotransformed to glutathione conjugates in the kidney with their subsequent hydrolysis to nephrotoxic cysteine conjugates.  相似文献   

16.
To gain understanding of the regulation of methionine level in plants, we assayed homoserine kinase and threonine synthase in extracts of wild type and several methionine-overproducing soybean [Glycine max (L.) Merr.] callus lines. The specific activity of homoserine kinase was depressed by 45–73%, and that of threonine synthase by 26–43% in the high methionine lines. Cysteine inhibited threonine synthase in wild type and variant lines. Threonine synthase in two variant lines showed significantly less inhibition by cysteine and in one line was inhibited by threonine. Depressed threonine synthase activity may increase the availability of homoserine phosphate to the competing methionine biosynthetic pathway.Abreviations MOPS morpholinopropane-sulfonate - EDTA ethylenediamine-tetraacetate - DTE dithioerythritol - AdoMet S-adenosylmethionine  相似文献   

17.
The localization of phenylalanine ammonia-lyase [EC 4.3.1.5] within sweet clover (Melilotus alba) leaves was investigated. Apical buds and axillary leaves contained 15 to 30 times more enzyme activity than did mature leaves. Mesophyll protoplasts were prepared by digesting young leaves with Cellulysin and Macerase and were gently ruptured yielding intact chloroplasts. These chloroplast preparations exhibited neither phenylalanine ammonia-lyase nor o-coumaric acid O-glucosyltransferase activities. The general enzymic properties of sweet clover leaf phenylalanine ammonia-lyase were similar to those described for this enzyme isolated from other plant species. The conversion of l-phenylalanine to trans-cinnamic acid, which occurred at an optimum pH of about 8.7, was strongly inhibited by the metabolites trans-cinnamic and o-coumaric acids. In contrast, o-coumaric acid glucoside, coumarin, p-coumaric acid, and melilotic acid had no significant effect on the reaction rate.  相似文献   

18.
Tryptophanase from Bacillus alvei also possesses serine dehydratase activity. A comparison of this enzyme with l-serine dehydratase [l-serine hydro-lyase (deaminating), EC 4.2.1.13] in toluene-treated whole cell preparations of the organism was undertaken. Tryptophanase is a constitutive enzyme in B. alvei. The dehydratase undergoes a repression-derepression-repression sequence as the l-serine level in the growth medium is increased from 0 to 0.1 m. Tryptophanase activity is decreased in organisms grown in medium containing glucose. Both enzymes are repressed in organisms grown in glycerol-containing medium. l-Serine dehydratase has a pH optimum of 7.5 in potassium phosphate buffer; tryptophanase functions optimally in this buffer at pH 8.2. Both enzymes lose activity in the presence of tris(hydroxymethyl)aminomethane buffer. Either K(+) or NH(4) (+) is required for full tryptophanase activity, but Na(+) is markedly inhibitory. These three cations are stimulatory to l-serine dehydratase activity. Both enzymes are subject to apparent substrate inhibition at high concentrations of their respective amino acids, but the inhibition of tryptophanase activity can be completely overcome by the removal of indole as it is formed. The dehydratase does not catalyze cleavage of d-serine, l-threonine, or alpha-substituted serine analogues at the concentrations tested. However, activity of the enzyme in cleaving l-serine is competitively inhibited by d-serine, indicating that the d-isomer can occupy an active site on the enzyme. The enzyme catalyzes cleavage of some beta-substituted serine analogues.  相似文献   

19.
Ro JS  Lee SS  Lee KS  Lee MK 《Life sciences》2001,70(6):639-645
The inhibitory effects of coptisine, a protoberberine isoquinoline alkaloid, on type A and type B monoamine oxidase (MAO-A and MAO-B) activities in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO-A activity in a concentration-dependent manner using a substrate kynuramine, but coptisine did not inhibit MAO-B activity. Coptisine exhibited 54.3% inhibition of MAO-A activity at 2 microM. The values of Km and Vmax of MAO-A were 151.9 +/- 0.6 microM and 0.40 +/- 0.03 nmol/min/mg protein, respectively (n=5). Coptisine competitively inhibited MAO-A activity with kynuramine. The Ki value of coptisine was 3.3 microM. The inhibition of MAO-A by coptisine was found to be reversible by dialysis of the incubation mixture. These results suggest that coptisine is a potent reversible inhibitor of MAO-A, and that coptisine functions to regulate the catecholamine content.  相似文献   

20.
Catalytic studies on tryptophanase from Bacillus alvei   总被引:2,自引:2,他引:0       下载免费PDF全文
Tryptophanase from Bacillus alvei exhibited the expected spectrum of pyridoxal-5'-phosphate-dependent reactions. It exhibited l-serine dehydratase, S-alkyl-cysteine lyase, and cysteine desulfhydrase activities, as well as the classic tryptophanase reactions (all beta elimination reactions). It also acted as a tryptophan synthetase (beta replacement reactions) using indole plus l-serine or l-cysteine or S-methyl-cysteine as substrates. The beta elimination reactions are simple competitors of the replacement reactions for the same amino acid substrates. The kinetics of the reactions were examined in detail using a coupled continuous spectrophotometric assay. A product (indole) inhibition study of the beta elimination reaction with tryptophan showed simple, noncompetitive inhibition; the same study with allosubstrates showed noncompetitive inhibition by indole. These product studies provided data on the beta replacement reactions as well. The results are discussed in terms of a mechanism for the B. alvei tryptophanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号