首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycosaminoglycan heparin is a polyanionic polysaccharide most recognized for its anticoagulant activity. Heparin binds to cationic regions in hundreds of prokaryotic and eukaryotic proteins, termed heparin-binding proteins. The endogenous ligand for many of these heparin-binding proteins is a structurally similar glycosaminoglycan, heparan sulfate (HS). Chemical and biosynthetic modifications of heparin and HS have been employed to discern specific sequences and charge-substitution patterns required for these polysaccharides to bind specific proteins, with the goal of understanding structural requirements for protein binding well enough to elucidate the function of the saccharide-protein interactions and/or to develop new or improved heparin-based pharmaceuticals. The most common modifications to heparin structure have been alteration of sulfate substitution patterns, carboxyl reduction, replacement N-sulfo groups with N-acetyl groups, and chain fragmentation. However, an accumulation of reports over the past 50 years describe semi-synthetic heparin derivatives obtained by incorporating aliphatic, aryl, and heteroaryl moieties into the heparin structure. A primary goal in many of these reports has been to identify heparin-derived structures as new or improved heparin-based therapeutics. Presented here is a perspective on the introduction of non-anionic structural motifs into heparin structure, with a focus on such modifications as a strategy to generate novel reduced-charge heparin-based bind-and-block antagonists of HS-protein interactions. The chemical methods employed to synthesize such derivatives, as well as other unique heparin conjugates, are reviewed.  相似文献   

2.
The diversity-oriented chemical modification of heparin is shown to afford charge-reduced heparin derivatives that possess increased selectivity for binding heparin-binding proteins. Variable N-desulfonation of heparin was employed to afford heparin fractions possessing varied levels of free amine. These N-desulfonated heparin fractions were selectively N-acylated with structurally diverse carboxylic acids using a parallel synthesis protocol to generate a library of 133 heparin-derived structures. Screening library members to compare affinity for heparin-binding proteins revealed unique heparin-derived structures possessing increased affinity and selectivity for individual heparin-binding proteins. Moreover, N-sulfo groups in heparin previously shown to be required for heparin to bind specific proteins have been replaced with structurally diverse non-anionic moieties to afford identification of charge-reduced heparin derivatives that bind these proteins with equivalent or increased affinity compared to unmodified heparin. The methods described here outline a process that we feel will be applicable to the systematic chemical modification of natural polyanionic polysaccharides and the preparation of synthetic oligosaccharides to identify charge-reduced high affinity ligands for heparin-binding proteins.  相似文献   

3.
Replacing N-sulfo groups in heparin with N-arylacyl moieties has been shown to afford charge-reduced heparin derivatives that maintain affinity for select heparin-binding proteins. In this study 50% and 100% N-desulfonated heparins were selectively N-acylated with phenylacetic acid and four phenylacetic acid analogs where the phenyl ring was replaced by a heterocycle. Protein-binding studies reveal that structural differences in the ring systems of the N-acyl groups appended to heparin afford significant affects on affinity and selectivity for different heparin-binding proteins.  相似文献   

4.
Biological and pharmacological interactions of heparin and structurally related glycosaminoglycans (GAGs) such as heparan sulfate (HS) involve complex sequences of variously sulfated uronic acid and aminosugar residues. Due to their structural microheterogeneity, these sequences are usually characterized in statistical terms, by high-performance liquid chromatographic analysis of fragments obtained by enzymatic or chemical degradation. Nuclear magnetic resonance (NMR) spectroscopy is also currently used for structural characterization of GAGs. However, the use of monodimensional NMR analysis of complex GAGs is often limited by severe signal overlap that does not allow reliable quantitative measurements. Using magnetically equivalent signals, the higher resolution achieved by two-dimensional NMR methods could be also exploited for quantitative applications. In this work, heteronuclear single quantum coherence (HSQC) spectroscopy has been evaluated to determine variously substituted monosaccharide components of HS and HS mimics obtained by chemical modification of the Escherichia coli K5 polysaccharide (K5-PS) structurally related to the common biosynthetic precursor of heparin and HS. Heparin was used as a model for assessing the influence of 1H-13C spin-spin couplings on "volumes" of the corresponding signals. For major signals, the HSQC approach permitted quantification of additional structural features both in heparins and in a typical HS. The method was applied to profile the substitution patterns of K5-PS derivatives involving different degrees of N,O-sulfation and N-acetylation, including O-sulfated heparosans bearing free amino groups.  相似文献   

5.
Hydrazinolysis of heparin and other glycosaminoglycans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed.  相似文献   

6.
Apolipoprotein E (apoE) has been genetically linked to late-onset Alzheimer's disease (AD). The role of this lipid-transport protein in AD remains to be established. One hypothesis is that apoE, particularly the apoE4 isoform, may have neurotoxic effects as demonstrated using apoE-related synthetic peptides and the N-terminal fragment of apoE. ApoE is a heparan-sulfate binding protein, and apoE peptide neurotoxicity can be blocked by heparin and prevented by degrading heparan sulfate or inhibiting its biosynthesis. The possibility that heparin inhibition of toxicity is mediated by a specific oligosaccharide sequence was investigated using a bioassay to determine the inhibition of apoE peptide toxicity by glycosaminoglycans and purified glycosaminoglycan oligosaccharides. Studies on modified heparins showed that the presence of N-sulfo groups and either 2- or 6-O sulfo groups were required for inhibition of toxicity. Heparin oligosaccharides with eight or more saccharide residues with seven O-sulfo groups and four N-sulfo groups exhibited potent inhibition. Larger oligosaccharides, and heparin and heparan sulfate polymers, afforded comparable, or somewhat better, protective effects but also caused clumping and detachment of cells when administrated alone.  相似文献   

7.
The biological roles of heparin (HP) and heparan sulfate (HS) are mediated mainly through their interaction with proteins. In the present work, we provide a rapid method for screening HP/HS-protein interactions providing structural data on the key sulfo groups that participate in the binding. A library of polysaccharides structurally related to HP was prepared by immobilizing the biotinylated N-sulfated K5 polysaccharide (N-sulfoheparosan) on sensor chips followed by selective modification of this polysaccharide with enzymes that participate in HP/HS biosynthesis. The polysaccharides synthesized on the surface of the sensor chips differ in the number and position of sulfo groups present both on uronic acid and glucosamine residues. Surface plasmon resonance was used to measure the interaction of each member of this polysaccharide library with antithrombin III (ATIII), to afford structural information on sulfo groups required for this HP/HS-protein interaction. This method is viewed as widely applicable for the study of the structure-activity relationship (SAR) of HP/HS-protein interactions.  相似文献   

8.
Heparin inhibits the growth of several cell types in vitro, including bovine pulmonary artery smooth muscle cells (BPASMCs). To understand more about the heparin structure required for endogenous activity, chemically modified derivatives of native heparin and glycol-split heparin, namely, 2-O-desulfonated iduronic/glucuronic acid residues in heparin, and 2-O-desulfonated iduronic residues in glycol-split heparin were prepared. These were assayed for their antiproliferative potency on cultured BPASMCs. All of the 2-O-desulfonated heparin derivatives had significantly decreased less antiproliferative activity on BPASMCs. These results suggest that the 2-O-sulfo group of iduronic acid residues in heparin's major sequence is essential for the antiproliferative properties of heparin. The size of heparin does not affect the growth-inhibitory properties of heparin on BPASMCs at the three dose levels examined.  相似文献   

9.
Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a β-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with a heparin disaccharide product, and identified the location of its active site. Here we present the structure of HepII complexed with a heparan sulfate disaccharide product, proving that the same binding/active site is responsible for the degradation of both uronic acid epimers containing substrates. The key enzymatic step involves removal of a proton from the C5 carbon (a chiral center) of the uronic acid, posing a topological challenge to abstract the proton from either side of the ring in a single active site. We have identified three potential active site residues equidistant from C5 and located on both sides of the uronate product and determined their role in catalysis using a set of defined tetrasaccharide substrates. HepII H202A/Y257A mutant lost activity for both substrates and we determined its crystal structure complexed with a heparan sulfate-derived tetrasaccharide. Based on kinetic characterization of various mutants and the structure of the enzyme-substrate complex we propose residues participating in catalysis and their specific roles.  相似文献   

10.
(1)H NMR spectroscopy has been established for the determination of uronate residues in glycosaminoglycans (GAGs) such as dermatan sulfate (DS), heparin (HP), and heparan sulfate (HS). Because of variation in the sulfonation positions in DS, HP, or HS, interpretation of spectra is difficult. Solvolysis was applied to remove O-sulfo groups from these GAG chains in dimethyl sulfoxide containing 10% methanol at 80 degrees C for 5 h. In the cases of HP and HS, N-sulfo groups on glucosamine residues were also removed under the same conditions. The resulting unsubstituted amino groups in HP and HS chains were re-N-acetylated using acetic anhydride to obtain homogeneous core structure with the exception of the variation of uronate residues. The contents of glucuronate and iduronate residues in the chemically modified DS, HP, and HS samples were analyzed by 600-MHz (1)H NMR spectroscopy. These methods were applied to compositional analysis of uronate residues in GAGs isolated from various sources.  相似文献   

11.
The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin and heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin and heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome-proteome interactions.  相似文献   

12.
Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary.  相似文献   

13.
The crystal structures of aprotinin and its complex with sucrose octasulfate (SOS), a polysulfated heparin analog, were determined at 1.7-2.6 Å resolutions. Aprotinin is monomeric in solution, which associates into a decamer at high salt concentrations. Sulfate ions serve to neutralize the basic amino acid residues of aprotinin to stabilize the decameric aprotinin. Whereas SOS interacts with heparin binding proteins at 1:1 molar ratio, SOS was surprisingly found to induce strong agglutination of aprotinins. Five molecules of aprotinin interact with one molecule of the sulfated sugar, which is stabilized by electrostatic interactions between the positively charged residues of aprotinin and sulfate groups of SOS. The multiple binding modes of SOS with five individual aprotinin molecules may represent the diverse patterns of potential heparin binding to aprotinin, reflecting the interactions of densely packed protein molecules along the heparin polymer.  相似文献   

14.
Heparan sulfate (HS) is a highly sulfated polysaccharide participated in essential physiological functions from regulating cell growth to blood coagulation. HS contains sulfated domains known as N-S domains and low sulfate domains known as N-Ac domains. The distribution of the domain structures is likely governed by the action of glucosaminyl N-deacetylase/N-sulfotransferase (NDST). Here, we sought to determine the substrate specificity of NDST using model substrates and recombinant NDST protein. We discovered that NDST-1 carries out the modification in a highly ordered fashion. The enzyme sulfates the substrate from the nonreducing end toward the reducing end consecutively, leading to the product with a cluster of N-sulfo glucosamine residues. Furthermore, a preexisting N-sulfo glucosamine residue prevents the action of NDST-1 at the residues immediately located at the nonreducing end, allowing the formation of an N-Ac domain. Our results provide the long sought evidence for understanding the formation of sulfated versus nonsulfated domains in the HS isolated from cells and tissues. The study demonstrates the regulating role of NDST-1 in mapping the sulfation patterns of HS.  相似文献   

15.
Heparin, heparan sulphate, and various derivatives thereof have been oxidised with periodate at pH 3.0 and 4° and at pH 7.0 and 37°. Whereas oxidation under the latter conditions destroys all of the nonsulphated uronic acids, treatment with periodate at low pH and temperature causes selective oxidation of uronic acid residues. The reactivity of uronic acid residues depends on the nature of neighbouring 2-amino-2-deoxyglucose residues. d-Glucuronic acid residues are susceptible to oxidation when flanked by N-acetylated amino sugars, but resistant when adjacent residues are either unsubstituted or N-sulphated. L-Iduronic acid residues in their natural environment (2-deoxy-2-sulphoamino-d-glucose) are resistant to oxidation, whereas removal of N-sulphate groups renders a portion of these residues periodate-sensitive. Oxidised uronic acid residues in heparin-related glycans may be cleaved by alkali, producing a series of oligosaccharide fragments. Thus, periodate oxidation-alkaline elimination provides an additional method for the controlled degradation of heparin.  相似文献   

16.
Porcine mucosal heparin was fragmented into low-molecular-weight (LMW) heparin by treatment of periodate-oxidized heparin with sodium hydroxide, followed by reduction with sodium borohydride and acid hydrolysis. Gradient polyacrylamide gel electrophoresis analysis showed a mixture of heparin fragments with an average size of eight disaccharide units. 1D 1H NMR showed two-thirds of the N-acetyl groups were lost on periodate cleavage, suggesting cleavage had occurred at the glucopyranosyluronic acid (GlcpA) and idopyranosyluronic acid (IdopA) residues located within and adjacent to the antithrombin III (ATIII) binding site. The N-acetyl glucopyranose (GlcpNAc) residue was lost on workup. The GlcpA residue, within the ATIII binding site, is on the non-reducing side of the N-sulfo, 3, 6-O-sulfo glycopyranosylamine (GlcpNS3S6S) residue. Thus, periodate cleaved heparin should be enriched in GlcpNS3S6S residues. Two-dimensional correlation spectroscopy (2D COSY) confirmed that LMW heparin prepared through periodate cleavage contained GlcpNS3S6S at its non-reducing end. As expected, this LMW heparin also showed reduced ATIII mediated anti-factor IIa and anti-factor Xa activities.  相似文献   

17.
Heparin's (HP's) antiproliferative effect on smooth muscle cells is potentially important in defining new approaches to treat pulmonary hypertension. The commercially available HP and heparan sulfate (HS) are structurally heterogenous polymers. In order to examine which sulfonate groups are required for endogenous antiproliferative activity, we prepared the following six chemically modified porcine mucosal HP and HS, which fell into three groups. One group consisted of fully O-sulfonated-N-acetylated, the second group consisted of de-N-sulfonated and re-N-acetylated, and the third group consisted of 6-O-desulfonated HP and HS derivatives. These six preparations were assayed for their antiproliferative potency on bovine pulmonary artery smooth muscle cells. The results of this assay show that (a) over-O-sulfonation of both HP and HS increases antiproliferative activity, (b) substitution of hexosamine with N-acetyl diminishes antiproliferative activity in both HP and HS, and (c) 6-O-desulfonation of HP and HS diminishes antiproliferative potency. Surprisingly, the type of uronic acid residue present at a given level of sulfation is unimportant for antiproliferative potency. In conclusion, only the level of O- and N-sulfo group substitution correlates well with HP and HS antiproliferative activity.  相似文献   

18.
Surface plasmon resonance (SPR) biosensors such as the BIAcore 2000 are a useful tool for the analysis of protein-heparin interactions. Generally, biotinylated heparin is captured on a streptavidin-coated surface to create heparinized surfaces for subsequent binding analyses. In this study we investigated three commonly used techniques for the biotinylation of heparin, namely coupling through either carboxylate groups or unsubstituted amines along the heparin chain, or through the reducing terminus of the heparin chain. Biotinylated heparin derivatives were immobilized on streptavidin sensor chips and several heparin-binding proteins were examined. Of the surfaces investigated, heparin attached through the reducing terminus had the highest binding capacity, and in some cases had a higher affinity for the proteins tested. Heparin immobilized via intrachain bare amines had intermediate binding capacity and affinity, and heparin immobilized through the carboxylate groups of uronic acids had the lowest capacity for the proteins tested. These results suggest that immobilizing heparin to a surface via intrachain modifications of the heparin molecule can affect the binding of particular heparin-binding proteins.  相似文献   

19.
To determine the significance of the heparan sulfate (HS) degradative endo-beta-glucuronidase (heparanase) in tumor invasion and metastasis and to develop possible antimetastatic agents, we synthesized specific inhibitors of this enzyme. We previously found that heparanase activity correlates with the lung colonization abilities of murine B16 melanoma cells and is inhibited by heparin [Nakajima, M., Irimura, T., Di Ferrante, N., & Nicolson, G. L. (1984) J. Biol. Chem. 259, 2283-2290]. In this study, heparin was chemically modified in order to determine which portions of its structure are responsible for heparanase inhibitory activity and to obtain heparanase inhibitors that have minimal additional biological effects, such as anticoagulation. N-Sulfate groups and O-sulfate in heparin were removed separately, and the resultant free amino groups were acetylated or resulfated. Heparin was also reduced at the carboxyl groups of uronic acid. The heparanase inhibitory activities of these heparin derivatives were examined by high-speed gel-permeation chromatography and by the use of radioactive HS immobilized on agarose beads. The results indicated that although N-sulfate and O-sulfate groups on glucosamine residues, and carboxyl groups on uronic acid residues, are important for heparanase inhibition, they are not essential for full activity. When highly metastatic B16-BL6 melanoma cells were incubated with N-acetylated N-desulfated heparin, N-resulfated N- and O-desulfated heparin, or carboxyl-reduced heparin and injected intravenously to syngenic C57BL/6 mice, significant reductions in the numbers of experimental melanoma lung metastases occurred.  相似文献   

20.
In the present paper a new strategy has been studied to introduce solely or in combination N-sulfo, O-sulfo, N-acetyl, and N-carboxymethyl groups into chitosan with highest possible regioselectivity and completeness and defined distribution along the polymer chain. The aim was to generate compounds having lowest toxicity for determining the pharmacological structure function relationships among different backbone structures and differently arranged functional groups compared to those of heparin and heparan sulfate. The water-soluble starting material, chitosan, with a degree of acetylation (DA) of 0.14 and a molecular weight of 29 kD, allows one to apply most of the known reactions of chitosan as well as some reactions of heparin chemistry successfully and with improved regioselectivity and completeness. On the other hand, a number of these reactions were not successful by application to water-soluble high-molecular-weight chitosan (DA 0.45 and 150 kD). The starting material showed statistical N-acetyl (N-Ac) distribution along the polymer chain according to the rules of Bernoulli, with highest abundance of the GlcNAc-GlcNAc diad along with a lower abundance of triads, tetrads, and pentads. The space between the N-Ac groups was filled up in homogeneous reactions by N-sulfo and/or N-carboxymethyl groups, which also resulted in a Bernoulli statistical distribution. The N-substitution reaction showed highest regioselectivity and completeness with up to three combined different functional groups. The regioselectivity of the 3-O-sulfo groups was improved by regioselective 6-desulfation of nearly completely sulfated 3,6-di-O-sulfochitosan. By means of desulfation reactions, all of the possible intermediate sulfated products are possible. 6-O-Sulfo groups can also be introduced with highest regioselectivity and completeness, and a number of partially 6-desulfated products are possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号