首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The macroscopic mechanical properties of trabecular bone can be predicted by its architecture using theoretical relationships between the elastic and architectural properties. Microdamage caused by overloading or fatigue decreases the apparent elastic moduli of trabecular bone requiring these relationships to be modified to predict the damaged elastic properties. In the case of isotropic damage, the apparent level elastic properties could be determined by multiplying all of the elastic constants by a single scalar factor. If the damage is anisotropic, the elastic constants may change by differing factors and the material coordinate system could become misaligned with the fabric coordinate system. High-resolution finite element models were used to simulate damage overloading on seven trabecular bone specimens subjected to pure shear strain in two planes. Comparison of the apparent elastic moduli of the specimens before and after damage showed that the reduction of the elastic moduli was anisotropic. This suggests that the microdamage within the specimens was inhomogeneous. However, after damage the specimens exhibited nearly orthotropic material symmetry as they did before damage. Changes in the orientation of the orthotropic material coordinate system were also small and occurred primarily in the transverse plane. Thus, while damage in trabecular bone is anisotropic, the material coordinate system remains aligned with the fabric tensor.  相似文献   

2.
A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric measurements. The method uses high-resolution computer reconstructions of trabecular bone specimens as input for large-scale FE-analyses to determine all the 21 elastic coefficients in the overall stiffness matrix of the specimen, using a direct mechanics approach. An optimization procedure is then used to find the coordinate transformation that yields the best orthotropic representation of this matrix. The method is illustrated here relative to two trabecular bone specimens. The techniques developed here can be used to obtain a complete characterization of the mechanical properties of trabecular architecture. With the development of in vivo reconstruction techniques, even in vivo measurements will be possible.  相似文献   

3.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

4.
H Wang  B Ji  XS Liu  XE Guo  Y Huang  KC Hwang 《Journal of biomechanics》2012,45(14):2417-2425
Bone remodeling is a complex dynamic process, which modulates both bone mass and bone microstructure. In addition to bone mass, bone microstructure is an important contributor to bone quality in osteoporosis and fragility fractures. However, the quantitative knowledge of evolution of three-dimensional (3D) trabecular microstructure in adaptation to the external forces is currently limited. In this study, a new 3D simulation method of remodeling of human trabecular bone was developed to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to different external loading conditions. The morphological features of trabecular plate and rod, such as thickness and number density in different orientations were monitored during the remodeling process using a novel imaging analysis technique, namely Individual Trabecula Segmentation (ITS). We showed that the volume fraction and microstructures of trabecular bone including, trabecular type and orientation, were determined by the applied mechanical load. Particularly, the morphological parameters of trabecular plates were more sensitive to the applied load, indicating that they played the major role in the mechanical properties of the trabecular bone. Reducing the applied load caused severe microstructural deteriorations of trabecular bone, such as trabecular plate perforation, rod breakage, and a conversion from plates to rods.  相似文献   

5.
Because changes in the mechanical properties of bone are closely related to trabecular bone remodeling, methods that consider the temporal morphological changes induced by adaptive remodeling of trabecular bone are needed to estimate long-term fracture risk and bone quality in osteoporosis. We simulated bone remodeling using simplified and pig trabecular bone models and estimated the morphology of healthy and osteoporotic cases. We then displayed the fracture risk of the remodeled models based on a cumulative histogram from high stress. The histogram showed more elements had higher stresses in the osteoporosis model, indicating that the osteoporosis model had a greater risk.  相似文献   

6.
In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric–elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.  相似文献   

7.
Damage accumulation under compressive fatigue loading is believed to contribute significantly to non-traumatic, age-related vertebral fractures in the human spine. Only few studies have explored trabecular bone fatigue behavior under compressive loading and none examined the influence of trabecular architecture on fatigue life. In this study, trabecular bone samples of human lumbar and thoracic vertebrae (4 donors from age 29 to 86, n=29) were scanned with a microCT system prior to compressive fatigue testing to determine morphology-mechanical relationships for this relevant loading mode. Inspired from previous fabric-based relationships for elastic properties and quasi-static strength of trabecular bone, a simple power relationship between volume fraction, fabric eigenvalue, applied stress and the number of cycles to failure is proposed. The experimental results demonstrate a high correlation for this relationship (R2=0.95) and detect a significant contribution of the degree of anisotropy towards prediction of fatigue life. Step-wise regression for total and residual strains at failure suggested a weak, but significant correlation with volume fraction. From the obtained results, we conclude that the applied stress normalized by volume fraction and axial fabric eigenvalue can estimate fatigue life of human vertebral trabecular bone in axial compressive loading.  相似文献   

8.
An alternative concept of the relationship between morphological and elastic properties of trabecular bone is presented and applied to human tissue from several anatomical locations using a digital approach. The three-dimensional morphology of trabecular bone was assessed with a microcomputed tomography system and the method of directed secants as well as the star volume procedure were used to compute mean intercept length (MIL) and average bone length (ABL) of 4 mm cubic specimens. Assuming isotropic elastic properties for the trabecular tissue, the general elastic tensors of the bone specimens were determined using the homogenization method and the closest orthotropic tensors were calculated with an optimization algorithm. The assumption of orthotropy for trabecular bone was found to improve with specimen size and hold within 6.1 percent for a 4 mm cube size. A strong global relationship (r2 = 0.95) was obtained between fabric and the orthotropic elastic tensor with a minimal set of five constants. Mean intercept length and average bone length provided an equivalent power of prediction. These results support the hypothesis that the elastic properties of human trabecular bone from an arbitrary anatomical location can be estimated from an approximation of the anisotropic morphology and a prior knowledge of tissue properties.  相似文献   

9.
Wolff's law of trabecular architecture at remodeling equilibrium   总被引:10,自引:0,他引:10  
An elastic constitutive relation for cancellous bone tissue is developed. This relationship involves the stress tensor T, the strain tensor E and the fabric tensor H for cancellous bone. The fabric tensor is a symmetric second rank tensor that is a quantitative stereological measure of the microstructural arrangement of trabeculae and pores in the cancellous bone tissue. The constitutive relation obtained is part of an algebraic formulation of Wolff's law of trabecular architecture in remodeling equilibrium. In particular, with the general constitutive relationship between T, H and E, the statement of Wolff's law at remodeling equilibrium is simply the requirement of the commutativity of the matrix multiplication of the stress tensor and the fabric tensor at remodeling equilibrium, T*H* = H*T*. The asterisk on the stress and fabric tensor indicates their values in remodeling equilibrium. It is shown that the constitutive relation also requires that E*H* = H*E*. Thus, the principal axes of the stress, strain and fabric tensors all coincide at remodeling equilibrium.  相似文献   

10.
Osteoporosis leads to an increased risk of bone fracture. While bone density and architecture can be assessed in vivo with increasing accuracy using CT and MRI, their relationship with the critical mechanical properties at various anatomical sites remain unclear. The objective of this study was to quantify the quasi-static compressive mechanical properties of human trabecular bone among different skeletal sites and compare their relationships with bone volume fraction and a measure of microstructural anisotropy called fabric. Over 600 trabecular bone samples from six skeletal sites were assessed by and tested in uniaxial compression. Bone volume fraction correlated positively with elastic modulus, yield stress, ultimate stress, and the relationships depended strongly on skeletal site. The account of fabric improved these correlations substantially, especially when the data of all sites were pooled together, but the fabric–mechanical property relationships remained somewhat distinct among the anatomical sites. The study confirms that, beyond volume fraction, fabric plays an important role in determining the mechanical properties of trabecular bone and should be exploited in mechanical analysis of clinically relevant sites of the human skeleton.  相似文献   

11.
Ever since Julius Wolff proposed the law of bone transformation in the 19th century, it has been widely known that the trabecular structure of cancellous bone adapts functionally to the loading environment. To understand the mechanism of Wolff's law, a three-dimensional (3D) computer simulation of trabecular structural changes due to surface remodeling was performed for a human proximal femur. A large-scale voxel finite element model was constructed to simulate the structural changes of individual trabeculae over the entire cancellous region. As a simple remodeling model that considers bone cellular activities regulated by the local mechanical environment, nonuniformity of local stress was assumed to drive the trabecular surface remodeling to seek a uniform stress state. Simulation results demonstrated that cell-scale (~10 μm) remodeling in response to mechanical stimulation created complex 3D trabecular structures of the entire bone-scale (~10 cm), as illustrated in the reference of Wolff. The bone remodeling reproduced the characteristic anisotropic structure in the coronal cross section and the isotropic structures in other cross sections. The principal values and axes of a structure characterized by fabric ellipsoids corresponded to those of the apparent stress of the structure. The proposed large-scale computer simulation indicates that in a complex mechanical environment of a hierarchical bone structure of over 104 length scale (from ~10 μm to ~10 cm), a simple remodeling at the cellular/trabecular levels creates a highly complex and functional trabecular structure, as characterized by bone density and orientation.  相似文献   

12.
Due to daily loading, trabecular bone is subjected to deformations (i.e., strain), which lead to stress in the bone tissue. When stress and/or strain deviate from the normal range, the remodeling process leads to adaptation of the bone architecture and its degree of mineralization to effectively withstand the sustained altered loading. As the apparent mechanical properties of bone are assumed to depend on the degree and distribution of mineralization, the goal of the present study was examine the influences of mineral heterogeneity on the biomechanical properties of trabecular bone in the human mandibular condyle. For this purpose nine right condyles from human dentate mandibles were scanned and evaluated with a microCT system. Cubic regional volumes of interest were defined, and each was transformed into two different types of finite element (FE) models, one homogeneous and one heterogeneous. In the heterogeneous models the element tissue moduli were scaled to the local degree of mineralization, which was determined using microCT. Compression and shear tests were simulated to determine the apparent elastic moduli in both model types. The incorporation of mineralization variation decreased the apparent Young's and shear moduli by maximally 21% in comparison to the homogeneous models. The heterogeneous model apparent moduli correlated significantly with bone volume fraction and degree of mineralization. It was concluded that disregarding mineral heterogeneity may lead to considerable overestimation of apparent elastic moduli in FE models.  相似文献   

13.
The elastic properties and mechanical behavior of trabecular bone are largely determined by its three-dimensional (3D) fabric structure. Recent work demonstrating a correlation between the primary mechanical and material axes in trabecular bone specimens suggests that fabric orientation may be used to infer directional components of the material strength and, by extension, the hypothetical loading regime. Here we quantify the principal orientation of trabecular bone in the femoral head and relate these principal fabric directions to loading patterns during various locomotor behaviors. The proximal femora of a diverse sample of prosimians were scanned using a high-resolution X-ray computed tomography scanner with resolution of better than 50 mum. Spherical volumes of interest were defined within the femoral heads and the 3D fabric anisotropy was calculated using the mean intercept length and star volume distribution methods. In addition to differences in bone volume and anisotropy, significant differences were found in the spatial orientation of the principal trabecular axes depending on locomotor behavior. The principal orientations for leapers (Galago, Tarsius, Avahi) are relatively tightly clustered (alpha(95) confidence limit: 8.2; angular variance s: 18.2 degrees ) and oriented in a superoanterior direction, while those of nonleapers are more variable across a range of directions (alpha(95): 16.8; s: 42.0 degrees ). The mean principal directions are significantly different for leaping vs. nonleaping taxa. These results further suggest a relationship between bone microstructure in the hip joint and locomotor behavior and indicate a similarity of loading across leapers despite differences in kinematics and phylogeny.  相似文献   

14.
An evolutionary Wolff's law for trabecular architecture.   总被引:3,自引:0,他引:3  
A continuum model is proposed to describe the temporal evolution of both the density changes and the reorientation of the trabecular architecture given the applied stress state in the bone and certain material parameters of the bone. The data upon which the proposed model is to be based consist of experimentally determined remodeling rate coefficients and quantitative stereological and anisotropic elastic constant measurements of cancellous bone. The model shows that the system of differential equations governing the temporal changes in architecture is necessarily nonlinear. This nonlinearity is fundamental in that it stems from the fact that, during remodeling, the relationship between stress and strain is changing as the stress and strain variables themselves are changing. In order to preserve the remodeling property of the model, terms that are of the order strain times the changes in density and/or microstructural properties must be retained. If these terms were dropped, there would be no feedback mechanism for architectural adaptation and no adaptation of the trabecular architecture. There is, therefore, no linearized version of the model of the temporal evolution of trabecular architecture. An application of the model is illustrated by an example problem in which the temporal evolution of homogeneous trabecular architecture is predicted. A limitation of the proposed continuum model is the length scale below which it cannot be applied. The model cannot be applied in regions of cancellous bone where the trabecular bone architecture is relatively inhomogeneous or at a bone-implant interface.  相似文献   

15.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

16.
Microcracking in trabecular bone is responsible both for the mechanical degradation and remodeling of the trabecular bone tissue. Recent results on trabecular bone mechanics have demonstrated that bone tissue microarchitecture, tissue elastic heterogeneity and tissue-level mechanical anisotropy all should be considered to obtain detailed information on the mechanical stress state. The present study investigated the influence of tissue microarchitecture, tissue heterogeneity in elasticity and material separation properties and tissue-level anisotropy on the microcrack formation process. Microscale bone models were executed with the extended finite element method. It was demonstrated that anisotropy and heterogeneity of the bone tissue contribute significantly to bone tissue toughness and the resistance of trabecular bone to microcrack formation. The compressive strain to microcrack initiation was computed to increase by a factor of four from an assumed homogeneous isotropic tissue to an assumed anisotropic heterogenous tissue.  相似文献   

17.
In 1961, Evans and King documented the mechanical properties of trabecular bone from multiple locations in the proximal human femur. Since this time, many investigators have cataloged the distribution of trabecular bone material properties from multiple locations within the human skeleton to include femur, tibia, humerus, radius, vertebral bodies, and iliac crest. The results of these studies have revealed tremendous variations in material properties and anisotropy. These variations have been attributed to functional remodeling as dictated by Wolff's Law. Both linear and power functions have been found to explain the relationship between trabecular bone density and material properties. Recent studies have re-emphasized the need to accurately quantify trabecular bone architecture proposing several algorithms capable of determining the anisotropy, connectivity and morphology of the bone. These past studies, as well as continuing work, have significantly increased the accuracy of analytical and experimental models investigating bone, and bone/implant interfaces as well as enhanced our perspective towards understanding the factors which may influence bone formation or resorption.  相似文献   

18.
In the perspective of predicting mechanical from morphological properties of human trabecular bone, the theoretical and experimental relationships between volume fraction, fabric and elastic properties were reviewed.Five data sets of human trabecular bone and two data sets of idealized cells were obtained from various investigators and analyzed statistically with one isotropic and four anisotropic models. For each model, multiple linear regressions were performed to fit the components of both the compliance and the stiffness tensors using volume fraction and in some cases fabric. The adjusted coefficients of determination of the regressions and the average relative errors of the reported versus the predicted tensor norms were calculated. The three anisotropic models that implied a log transformation of the data showed the best results. Excluding the idealized cell data, the adjusted coefficients of determination of these models ranged from 0.80 to 0.95 for the compliance and from 0.80 to 0.94 for the stiffness tensors, while the average relative errors varied between 16% and 55% for the compliance and between 25% and 62% for the stiffness data. The use of volume fraction alone in the isotropic model decreased the adjusted coefficients of determination by 0.03-0.25 and increased the average relative errors by 5-27%.This review confirms the potential of morphology-elasticity relationships for estimation of elastic properties of human trabecular bone using peripheral quantitative computed tomography or magnetic resonance imaging, but emphasizes the need for standardized measurements of mechanical properties at both continuum and tissue level.  相似文献   

19.
The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency creating a naturally optimum structure. The goal of the current study was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyse the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175 μm mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur samples from literature using a variety of visualization techniques, including radiography and computed tomography (CT). The results qualitatively revealed several anisotropic trabecular regions, that were comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with quantitative CT analyses. The global strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as the Wolff hypothesized.  相似文献   

20.
Remodelling of trabecular bone is essentially affected by the mechanical load of the trabeculae. Mathematical modelling and simulation of the remodelling process have to include time-consuming calculations of the displacement field within the complex trabecular structure under loading. We present an adaptive diffuse domain approach for calculating the elastic bone deformation based on micro computer tomogram data of real trabecular bone structures and compared it with a conventional voxel-based finite element method. In addition to allowing for higher computational efficiency, the adaptive approach is characterised by a very smooth representation of the bone surface, which suggests that this approach would be suitable as a basis for future simulations of bone resorption and formation processes within the trabecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号