首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. In this study, cognitive function and the related mechanism were examined in theanine-administered young rats. Newborn rats were fed theanine through dams, which were fed water containing 0.3% theanine, and then fed water containing 0.3% theanine after weaning. Theanine level in the brain was under the detectable limit 6 weeks after the start of theanine administration. Theanine administration did not influence locomotor activity in the open-field test. However, rearing behavior was significantly increased in theanine-administered rats, suggesting that exploratory activity is increased by theanine intake. Furthermore, object recognition memory was enhanced in theanine-administered rats. The increase in exploratory activity in the open-field test seems to be associated with the enhanced object recognition memory after theanine administration. On the other hand, long-term potentiation (LTP) induction at the perforant path-granule cell synapse was not changed by theanine administration. To check hippocampal neurogenesis, BrdU was injected into rats 3 weeks after the start of theanine administration, and brain-derived neurotropic factor (BDNF) level was significantly increased at this time. Theanine intake significantly increased the number of BrdU-, Ki67-, and DCX-labeled cells in the granule cell layer 6 weeks after the start of theanine administration. This study indicates that 0.3% theanine administration facilitates neurogenesis in the developing hippocampus followed by enhanced recognition memory. Theanine intake may be of benefit to the postnatal development of hippocampal function.  相似文献   

2.
The effects of dietary powdered green tea (PGT) and theanine on in vivo hepatoma growth and cancerous hyperlipidemia were investigated in rats that had been implanted with a rat ascites hepatoma cell line of AH109A cells. The hepatoma-bearing rats were fed with a 20% casein diet (20C), 20C containing 2% PGT, or 20C containing 0.1% theanine for 14 days. Dietary PGT significantly and time-dependently reduced the solid tumor volume and weight as did dietary theanine. The hepatoma-induced endogenous hyperlipidemia, which was characterized by rises in the serum cholesterol (hypercholesterolemia) and triglyceride (hypertriglyceridemia) levels, was significantly suppressed by PGT and theanine supplementation. Bile acid excretion into the feces was significantly higher in the PGT- and theanine-fed rats than in the control rats. This inhibition of hypercholesterolemia may have resulted from tumor growth suppression as well as increased excretion of steroids from the body. These results suggest that PGT had both anti-proliferative activity toward hepatoma cells and hypolipidemic activity in the hepatoma bearing rats. They also suggest that theanine was, at least in part, responsible for the PGT actions.  相似文献   

3.
Although environmental enrichment is well known to improve learning and memory in rodents, the underlying neuronal networks'' plasticity remains poorly described. Modifications of the brain activation pattern by enriched condition (EC), especially in the frontal cortex and the baso-lateral amygdala, have been reported during an aversive memory task in rodents. The aims of our study were to examine 1) whether EC modulates episodic-like memory in an object recognition task and 2) whether EC modulates the task-induced neuronal networks. To this end, adult male mice were housed either in standard condition (SC) or in EC for three weeks before behavioral experiments (n = 12/group). Memory performances were examined in an object recognition task performed in a Y-maze with a 2-hour or 24-hour delay between presentation and test (inter-session intervals, ISI). To characterize the mechanisms underlying the promnesiant effect of EC, the brain activation profile was assessed after either the presentation or the test sessions using immunohistochemical techniques with c-Fos as a neuronal activation marker. EC did not modulate memory performances after a 2 h-ISI, but extended object recognition memory to a 24 h-ISI. In contrast, SC mice did not discriminate the novel object at this ISI. Compared to SC mice, no activation related to the presentation session was found in selected brain regions of EC mice (in particular, no effect was found in the hippocampus and the perirhinal cortex and a reduced activation was found in the baso-lateral amygdala). On the other hand, an activation of the hippocampus and the infralimbic cortex was observed after the test session for EC, but not SC mice. These results suggest that the persistence of object recognition memory in EC could be related to a reorganization of neuronal networks occurring as early as the memory encoding.  相似文献   

4.
本研究的主要目的是建立昆明小鼠物体识别模型并评价该模型在安全药理学研究中的潜在应用价值。研究了昆明小鼠物体识别记忆随时间而减弱的特性,在训练结束后4h或1h,检测昆明小鼠的物体识别记忆,并评价了东莨胆碱对昆明小鼠物体识别记忆的影响。结果表明:1h间隔组昆明小鼠熟悉期探究物体的时间差和测试期探究物体的时间差存在显著差异(P<0.05),昆明小鼠在训练结束后1h记忆保持良好,可以进行物体识别;东莨胆碱组昆明小鼠熟悉期探究物体的时间差和测试期探究物体的时间差比较(P>0.05),没有显著性差异。因此,东莨胆碱损伤了昆明小鼠的物体识别记忆。用昆明小鼠建立的物体识别模型具有简单、快速、可靠等特点,在安全药理学研究中可用于检测化学药物对记忆的损伤。  相似文献   

5.
Recognition memories are formed during perceptual experience and allow subsequent recognition of previously encountered objects as well as their distinction from novel objects. As a consequence, novel objects are generally explored longer than familiar objects by many species. This novelty preference has been documented in rodents using the novel object recognition (NOR) test, as well is in primates including humans using preferential looking time paradigms. Here, we examine novelty preference using the NOR task in tree shrew, a small animal species that is considered to be an intermediary between rodents and primates. Our paradigm consisted of three phases: arena familiarization, object familiarization sessions with two identical objects in the arena and finally a test session following a 24-h retention period with a familiar and a novel object in the arena. We employed two different object familiarization durations: one and three sessions on consecutive days. After three object familiarization sessions, tree shrews exhibited robust preference for novel objects on the test day. This was accompanied by significant reduction in familiar object exploration time, occurring largely between the first and second day of object familiarization. By contrast, tree shrews did not show a significant preference for the novel object after a one-session object familiarization. Nonetheless, they spent significantly less time exploring the familiar object on the test day compared to the object familiarization day, indicating that they did maintain a memory trace for the familiar object. Our study revealed different time courses for familiar object habituation and emergence of novelty preference, suggesting that novelty preference is dependent on well-consolidated memory of the competing familiar object. Taken together, our results demonstrate robust novelty preference of tree shrews, in general similarity to previous findings in rodents and primates.  相似文献   

6.
We identified an effect of γ-glutamylethylamide (theanine) on feeding in a rat study. Oral theanine suppressed the food intake of rats. The serum glucose level did not differ from the control, but the insulin concentration was reduced and the corticosterone concentration was increased by theanine. We suggest that the effect of theanine on feeding involved hormones.  相似文献   

7.
We identified an effect of gamma-glutamylethylamide (theanine) on feeding in a rat study. Oral theanine suppressed the food intake of rats. The serum glucose level did not differ from the control, but the insulin concentration was reduced and the corticosterone concentration was increased by theanine. We suggest that the effect of theanine on feeding involved hormones.  相似文献   

8.
Caffeine is one of the most psychostimulants consumed all over the world that usually presents positive effects on cognition. In this study, effects of caffeine on mice performance in the object recognition task were tested in different intertrial intervals. In addition, it was analyzed the effects of caffeine on brain derived neurotrophic factor (BDNF) and its receptor, TrkB, immunocontent to try to establish a connection between the behavioral finding and BDNF, one of the neurotrophins strictly involved in memory and learning process. CF1 mice were treated during 4 consecutive days with saline (0.9g%, i.p.) or caffeine (10mg/kg, i.p., equivalent dose corresponding to 2-3 cups of coffee). Caffeine treatment was interrupted 24h before the object recognition task analysis. In the test session performed 15min after training session, caffeine-treated mice recognized more efficiently both the familiar and the novel object. In the test session performed 90min and 24h after training session, caffeine did not change the time spent in the familiar object but increased the object recognition index, when compared to control group. Western blotting analysis of hippocampus from caffeine-treated mice revealed an increase in BDNF and TrkB immunocontent, compared to their saline-matched controls. Phospho-CREB immunocontent did not change with caffeine treatment. Our results suggest that acute treatment with caffeine improves recognition memory, and this effect may be related to an increase of the BDNF and TrkB immunocontent in the hippocampus.  相似文献   

9.
A number of studies have shown that power frequency magnetic fields may affect spatial memory functions in rodents. An experiment was performed using a spontaneous object recognition task to investigate if nonspatial working memory was similarly affected. Memory changes in adult, male C57BL/6J mice were assessed by measuring the relative time within which the animals explored familiar or novel stimulus objects. Between initial testing and retesting, the animals were exposed for 45 min to a 50 Hz magnetic field at either 7.5 microT, 75 microT or 0.75 mT. Other animals were sham-exposed with ambient fields of less than 50 nT. No significant field-dependent effects on the performance of the task were observed at any flux density (for all measures, P > 0.05). These data provide no evidence to suggest that nonspatial working memory was affected in mice by acute exposure to an intense 50 Hz magnetic field.  相似文献   

10.
We investigated whether object familiarization was related to novel-object preference in the novel-object preference (NOP) test in rats. In Experiment 1, we found that no significant correlation existed between the time spent investigating 2 identical copies of a sample object and the degree of preference for a novel object. In Experiment 2, rats investigated 2 identical sample objects for a total of 5, 30, 60, 90 or 120 s. Investigatory preference for the novel object was compared to chance expectancy as well as between the groups. Only the 90-s group and the 120-s group displayed above-chance investigatory preference for the novel object, but novel-object preference for these 2 groups did not differ from each other, suggesting that a minimal amount of sample object investigation is necessary for rats to develop a novel-object preference, beyond which no increase in novel-object preference was found. In Experiments 3 and 4, normal rats and rats with hippocampal lesions were given repeated test trials, with the same sample object presented with a different novel object, at 24-h and (Experiment 3) and 35-s intervals (Experiment 4). In both experiments, novel-object preference did not increase in magnitude with repeated sample object exposures, suggesting that increased familiarity with the sample object does not result in increased novel-object preference. Rats with lesions of the dorsal hippocampus showed an unreliable investigatory preference for the novel object. These results are discussed in terms of the potential limitations of the NOP test as a tool for the assessment of object-recognition memory in rats.  相似文献   

11.
We present a biologically motivated architecture for object recognition that is capable of online learning of several objects based on interaction with a human teacher. The system combines biological principles such as appearance-based representation in topographical feature detection hierarchies and context-driven transfer between different levels of object memory. Training can be performed in an unconstrained environment by presenting objects in front of a stereo camera system and labeling them by speech input. The learning is fully online and thus avoids an artificial separation of the interaction into training and test phases. We demonstrate the performance on a challenging ensemble of 50 objects.  相似文献   

12.
There is increasing evidence that sleep facilitates memory acquisition and consolidation. Moreover, the sleep-wake history preceding memory acquisition and retention as well as circadian timing may be important. We showed previously that sleep deprivation (SD) following learning in OF1 mice impaired their performance on an object recognition task. The learning task was scheduled at the end of the 12 h dark period and the test 24 h later. To investigate the influence of the prominent circadian sleep-wake distribution typical for rodents, we now scheduled the learning task at the beginning of the dark period. Wakefulness following immediately after the learning task was attained either by gentle interference (SD; n?=?20) or by spontaneous wheel running (RW; n?=?20). Two control groups were used: one had no RW throughout the experiment (n?=?23), while the other group's wheel was blocked immediately after acquisition (n?=?16), thereby preventing its use until testing. Recognition memory, defined as the difference in exploration of a novel and of familiar objects, was assessed 24 h later during the test phase. Motor activity and RW use were continuously recorded. Remarkably, performance on the object recognition task was not influenced by the protocols; the waking period following acquisition did not impair memory, independent of the method inducing wakefulness (i.e., sleep deprivation or spontaneous running). Thus, all groups explored the novel object significantly longer than the familiar ones during the test phase. Interestingly, neither the amount of rest lost during the SD interventions nor the amount of rest preceding acquisition influenced performance. However, the total amount of rest obtained by the control and SD mice subjected to acquisition at “dark offset” correlated positively (r?=?0.66) with memory at test, while no such relationship occurred in the corresponding groups tested at dark onset. Neither the amount of running nor intermediate rest correlated with performance at test in the RW group. We conclude that interfering with sleep during the dark period does not affect object recognition memory consolidation.  相似文献   

13.
Hippocampal function is important for learning and memory, and dysfunction of the hippocampus has been linked to the pathophysiology of neuropsychiatric diseases such as schizophrenia. Neuregulin1 (NRG1) and ErbB4, two susceptibility genes for schizophrenia, reportedly modulate long-term potentiation (LTP) at hippocampal Schaffer collateral (SC)-CA1 synapses. However, little is known regarding the contribution of hippocampal NRG1/ErbB4 signaling to learning and memory function. Here, quantitative real-time PCR and Western blotting were used to assess the mRNA and protein levels of NRG1 and ErbB4. Pharmacological and genetic approaches were used to manipulate NRG1/ErbB4 signaling, following which learning and memory behaviors were evaluated using the Morris water maze, Y-maze test, and the novel object recognition test. Spatial learning was found to reduce hippocampal NRG1 and ErbB4 expression. The blockade of NRG1/ErbB4 signaling in hippocampal CA1, either by neutralizing endogenous NRG1 or inhibiting/ablating ErbB4 receptor activity, enhanced hippocampus-dependent spatial learning, spatial working memory, and novel object recognition memory. Accordingly, administration of exogenous NRG1 impaired those functions. More importantly, the specific ablation of ErbB4 in parvalbumin interneurons also improved learning and memory performance. The manipulation of NRG1/ErbB4 signaling in the present study revealed that NRG1/ErbB4 activity in the hippocampus is critical for learning and memory. These findings might provide novel insights on the pathophysiological mechanisms of schizophrenia and a new target for the treatment of Alzheimer’s disease, which is characterized by a progressive decline in cognitive function.  相似文献   

14.
The determination of theanine has been performed by micellar electrokinetic capillary chromatography (MECC) using 2,4-dinitrofluorobenzene (DNFB) as a derivative reagent. To achieve the separation, a fused-silica capillary column was used with a borax buffer at 0.03 mol/L pH 9.8 (containing Brij35 and isopropanol) at 17 degrees C with detection wave length at 360 nm. The factors affecting the efficiency of the sample separation were examined simultaneously. A 40-min reaction at 35 degrees C between l-glutamate and ethylamine (with Tris-HCl buffer, pH 7.5) was investigated using the theanine synthetase from budding tea seeds. A novel method for the analysis of theanine synthetase activity based on MECC was established. The method shows mean recovery ranged from 87.1 to 105.3% and linearity ranged from 0.2 to 5.0 mmol/L.  相似文献   

15.
Theanine (r-glutamylethylamide) is one of the major amino acid components in green tea. Recent studies suggest that theanine affects neurotransmission, especially inhibitory neurotransmission. In this study, we investigated whether theanine affects brain development in infant rats, because inhibitory neurotransmission is required for mature brain function. Mother rats were fed theanine ad libitum after confinement. The body weight gain rate of infants was not different from control infants. We detected theanine in the infant serum and measured neurotransmitter concentration and nerve growth factor (NGF) mRNA level in the infant rat brain. Some neurotransmitters, including dopamine, serotonin, glycine and GABA concentration, increased in the infant brain and NGF mRNA level increased in the cerebral cortex and hippocampus. However, these differences were lost by the end of nerve maturity. These results suggest that theanine enhanced synthesis of nerve growth factor and neurotransmitters during a nerve maturing period and promoted central nerve system maturation (CNS). Thus, theanine accelerated maturation. In conclusion, theanine may assist in healthy brain function development.  相似文献   

16.
Time-dependent changes of theanine (gamma-glutamylethylamide) and other amino acids in various tissues of rats were investigated during the 24 hrs after theanine administration. When theanine (4 g/kg of body weight) was intragastrically administered to rats, the concentrations of theanine in the serum, liver and brain were significantly increased 1 hr after its administration, and thereafter gradually decreased, but reached the maximum level in the brain after 5 hrs. Theanine in these tissues had completely disappeared 24 hrs after its administration. In contrast, the administration of theanine resulted in the concentrations of theanine, urea, ethylamine and glutamic acid in the urine being significantly enhanced. These results suggest that theanine might be degraded via glutamic acid.  相似文献   

17.
Theanine, r-glutamylethylamide, is one of the major components of amino acids in Japanese green tea. Effect of theanine on brain amino acids and monoamines, and the striatal release of dopamine (DA) was investigated. Determination of amino acids in the brain after the intragastric administration of theanine showed that theanine was incorporated into brain through blood-brain barrier via leucine-preferring transport system. The concentrations of norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole acetic acid (5HIAA) in the brain regions were unaffected by the theanine administration except in striatum. Theanine administration caused significant increases in serotonin and/or DA concentrations in the brain, especially in striatum, hypothalamus and hippocampus. Direct administration of theanine into brain striatum by microinjection caused a significant increase of DA release in a dose-dependent manner. Microdialysis of brain with calcium-free Ringer buffer attenuated the theanine-induced DA release. Pretreatment with the Ringer buffer containing an antagonist of non-NMDA (N-methyl-D-aspartate) glutamate receptor, MK-801, for 1 hr did not change the significant increase of DA release induced by theanine. However, in the case of pretreatment with AP-5, (±)-2-amino-5-phosphonopentanoic acid; antagonist of NMDA glutamate receptor, the theanine-induced DA release from striatum was significantly inhibited. These results suggest that theanine might affect the metabolism and/or the release of some neurotransmitters in the brain, such as DA.  相似文献   

18.
Rats and mice have a tendency to interact more with a novel object than with a familiar object. This tendency has been used by behavioral pharmacologists and neuroscientists to study learning and memory. A popular protocol for such research is the object-recognition task. Animals are first placed in an apparatus and allowed to explore an object. After a prescribed interval, the animal is returned to the apparatus, which now contains the familiar object and a novel object. Object recognition is distinguished by more time spent interacting with the novel object. Although the exact processes that underlie this 'recognition memory' requires further elucidation, this method has been used to study mutant mice, aging deficits, early developmental influences, nootropic manipulations, teratological drug exposure and novelty seeking.  相似文献   

19.
The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  相似文献   

20.
Alzheimer??s disease (AD) is a disabling, fatal disease, where animal models potentially can enable investigation of aetiology and treatment. The first litter of G?ttingen minipigs carrying a mutation for human AD was born in 2007, showing transgene expression. In human AD patients, memory impairment is the most striking and consistent feature. The aim of the present study was to examine effects of the APPsw transgene on memory of AD minipigs compared with non-transgenic controls at two ages (1?C2?years) using the spontaneous object recognition test (SORT), which is based on behavioural discrimination of familiar and novel objects. No significant difference between AD minipigs and controls was found when comparing object recognition as a measure of memory. The minipigs did explore the novel object significantly more than the familiar, indicating the expected recognition of the familiar object. Two different inter-phase intervals were used (IPI: 10?C40?min). For both ages, object recognition was evident using 10?min IPI. When using 40?min IPI, object recognition was evident only at age 1?year. Comparing memory of a relatively small group of AD minipigs and controls at two rather young ages using the SORT, we were not able to show memory impairment in APPsw carrying minipigs. Being an age-dependent disease, the transgene is expected to cause AD-like symptoms in this porcine model, and the SORT should be repeated at older ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号