首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human induced pluripotent stem cells (hiPSCs) are a type of pluripotent stem cells artificially derived from an adult somatic cell (typically human fibroblast) by forced expression of specific genes. In recent years, different feeders like inactivated mouse embryonic fibroblasts (MEFs), human dermal fibroblasts (HDFs), and feeder free system have commonly been used for supporting the culture of stem cells in undifferentiated state. In the present work, the culture of hiPSCs and their characterizations on BD Matrigel (feeder-and serum-free system), MEF and HDF feeders using cell culture methods and molecular techniques were evaluated and compared. The isolated HDFs from foreskin samples were reprogrammed to hiPSCs using gene delivery system. Then, the pluripotency ability of hiPSCs cultured on each layer was determined by teratoma formation and immunohistochemical staining. After EBs generation the expression level of three germ layers genes were evaluated by Q-real-time PCR. Also, the cytogenetic stability of hiPSCs cultured on each condition was analyzed by karyotyping and comet assay. Then, the presence of pluripotency antigens were confirmed by Immunocytochemistry (ICC) test and alkaline phosphatase staining. This study were showed culturing of hiPSCs on BD Matrigel, MEF and HDF feeders had normal morphology and could maintain in undifferentiated state for prolonged expansion. The hiPSCs cultured in each system had normal karyotype without any chromosomal abnormalities and the DNA lesions were not observed by comet assay. Moreover, up-regulation in three germ layers genes in cultured hiPSCs on each layer (same to ESCs) compare to normal HDFs were observed (p < 0.05). The findings of the present work were showed in stem cells culturing especially hiPSCs both MEF and HDF feeders as well as feeder free system like Matrigel are proper despite benefits and disadvantages. Although, MEFs is suitable for supporting of stem cell culturing but it can animal pathogens transferring and inducing immune response. Furthermore, HDFs have homologous source with hiPSCs and can be used as feeder instead of MEF but in therapeutic approaches the cells contamination is a problem. So, this study were suggested feeder free culturing of hiPSCs on Matrigel in supplemented media (without using MEF conditioned medium) resolves these problems and could prepare easy applications of hiPSCs in therapeutic approaches of regenerative medicine such as stem-cell therapy and somatic cell nuclear in further researches.  相似文献   

2.
3.
Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs.  相似文献   

4.
Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. Here we showed that the bone morphogenetic protein antagonist noggin is critical in preventing differentiation of hES cells in culture. Furthermore, we found that the combination of noggin and basic fibroblast growth factor (bFGF) was sufficient to maintain the prolonged growth of hES cells while retaining all hES cell features. Since both noggin and bFGF are expressed in MEF, our findings suggest that they may be important factors secreted by MEF for maintaining undifferentiated pluripotent hES cells. Our data provide new insight into the mechanism how hES cell self-renewal is regulated. The newly developed feeder-free culture system will provide a more reliable alternative for future therapeutic applications of hES cells.  相似文献   

5.
对关中奶山羊配种后6~7天的桑椹胚和囊胚,分别采用全胚培养法、酶消化法和免疫外科法进行处理.将处理后的胚胎培养于小鼠胎儿成纤维细胞(MEF)饲养层上,分离培养山羊胚胎干细胞(Embryonic stem cell,ESC).对分离传代的山羊ESCs分别进行免疫组化染色,RT-PCR检测和体外诱导分化试验.结果表明.全胚培养法易于胚胎贴壁形成原代集落,采用全胚培养法获得的ESCs有一株目前已传至18代.山羊ESCs Nanong、Oct4、SSEA-3免疫组化染色呈阳性,SSEA-1免疫组化染色呈弱阳性,SSEA-4免疫组化染色呈阴性,RT-PCR检测显示其表达Nanog、Oct4、端粒酶、CD117.山羊ESCs经DMSO体外诱导可以向心肌细胞分化.这些试验均表明该细胞具有ESCs的生物学特性.  相似文献   

6.
7.
In recent years, considerable attention has been paid to chicken embryonic stem cells (ESCs) studies in relation to extensive applications in gene therapy and regenerative medicine. However, the approaches used are still immature. In this study, we showed that the chicken ESCs clones with a clear border can express alkaline phosphatase and marker proteins such as SSEA-1, SOX2, and OCT4 stably. In addition, culture medium containing 10 μmol/L of vitamin C (VC) could significantly promote the proliferation of ESCs cells. Moreover, ESCs transfected with p:enhanced green fluorescent protein (pEGFP)-hTERT could be subcultured more than tenth generations in culture medium containing exogenous factors (mLIF + bFGF + hSCF) and VC, and these ESCs clone could still be regenerated following cryopreservation. Quantitative real-time polymerase chain reaction results showed that there was no significant difference between SSEA-1, SOX2, and OCT4 expression during ESCs immortalization and that the tenth generation of ESCs was still able to express marker proteins SSEA-1, SOX2, and OCT4. Our results showed that an immobilized system for ESCs was established, and the ESCs were cultured in vitro maintaining their pluripotency.  相似文献   

8.
Previous reports have demonstrated the growth of undifferentiated human embryonic stem (HES) cells on mouse embryonic fibroblast (MEF) feeders and on laminin- or Matrigel-coated plastic surfaces supplemented with MEF-conditioned medium. These xenosupport systems run the risk of cross-transfer of animal pathogens from the animal feeder, matrix, or conditioned medium to the HES cells, thus compromising later clinical application. Here we show that human fetal and adult fibroblast feeders support prolonged undifferentiated HES cell growth of existing cell lines and are superior to cell-free matrices (collagen I, human extracellular matrix, Matrigel, and laminin) supplemented with human or MEF feeder-conditioned medium. Additionally, we report the derivation and establishment of a new HES cell line in completely animal-free conditions. Like HES cells cultured on MEF feeders, the HES cells grown on human feeders had normal karyotypes, tested positive for alkaline phosphatase activity, expressed Oct-4 and cell surface markers including SSEA-3, SSEA-4, Tra 1-60, and GCTM-2, formed teratomas in severely combined immunodeficient (SCID) mice, and retained all key morphological characteristics. Human feeder#150;supported HES cells should provide a safer alternative to existing HES cell lines in therapeutic applications.  相似文献   

9.
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs.  相似文献   

10.
Human embryonic stem (hES) cells were originally isolated and maintained on mouse embryonic fibroblast (MEF) feeder layers in the presence of fetal bovine serum (FBS). However, if the hES cells are to be used for therapeutic applications, it is preferable to regulatory authorities that they be derived and cultured in animal-free conditions to prevent mouse antigen contamination that would exacerbate an immune response to foreign proteins, and the potential risk of transmission of retroviral and other zoonotic pathogens to humans. As a step towards this goal, we derived a new hES cell line (MISCES-01) on human adult skin fibroblasts as feeder cells using serum replacement (SR) medium. The MISCES-01 cells have a normal diploid karyotype (46XX), express markers of pluripotency (OCT4, GCTM-2, TRA-1-60, TRA-1-81, SSEA-3, SSEA-4, and alkaline phosphatase) and following in vitro and in vivo differentiation, give rise to derivatives of the three primary germ layers. This cell line can be obtained for research purposes from the Australian Stem Cell Centre (http://www.stemcellcentre.edu.au).  相似文献   

11.
Embryonic stem cells (ESCs) hold great promise for therapeutic use and represent a unique tool for investigating the process of self-renewal and differentiation. The properties that make ESCs unique are their capacity of unlimited self-renewal coupled with the property of re-entering the developmental process if returned inside a blastocyst. Such plasticity enable ESCs to form all embryonic tissues including germ cells. However, these remarkable properties, at present, have been demonstrated only for mouse ESCs even if cells with somehow more limited capacities have been derived in many different species including humans. The isolation of pluripotent embryonic cells lines from human embryos marked a crucial change of perspective in evaluating the properties defining an embryonic stem cell lines moving the focus from the generation of a germ-line chimera, obviously not feasible nor desirable in human, to the capacity of these cells to differentiate both in vivo and in vitro in fully mature and functional cell types of all kinds. Therefore, ESCs properties in species different from the mouse are being reassessed and re-evaluated, in view of their potential use as experimental models for the development of clinical applications. Among the species that may play a useful role in this field, the pig has a long-standing history as a prime animal model for pre-clinical biomedical applications and therefore, pig ESCs are attracting renewed interest. In this review, we will summarize the current knowledge on this topic and will contrast the relatively limited data available in this species with the much larger wealth of information available for mouse and human ESCs, in an attempt to assess whether or not pig ESCs can actually become a useful tool in the fast growing field of cell therapy.  相似文献   

12.
Induced pluripotent stem cells(iPSCs)resemble embryonic stem cells(ESCs)in morphology,gene expression and in vitro differentiation,raising new hope for personalized clinical therapy.While many efforts have been made to improve reprogramming effciency,signifcant problems such as genomic instability of iPSCs need to be addressed before clinical therapy.In this study,we try to fgure out the real genomic state of iPSCs and their DNA damage response to ionizing radiation(IR).We found that iPSC line 3FB4-1 had lower DNA damage repair ability than mouse embryonic fbroblast(MEF)cells,from which 3FB4-1line was derived.After the introduction of DNA damage by IR,the number of c-H2AX foci in 3FB4-1 increased modestly compared to a large increase seen in MEF,albeit both signifcantly(P<0.01).In addition,whole-genome sequencing analysis showed that after IR,3FB4-1 possessed more point mutations than MEF and the point mutations spread all over chromosomes.These observations provide evidence that iPSCs are more sensitive to ionizing radiation and their relatively low DNA damage repair capacity may account for their high radiosensitivity.The compromised DNA damage repair capacity of iPSCs should be considered when used in clinical therapy.  相似文献   

13.
以小鼠胚胎成纤维细胞(MEF)为饲养层, 研究了用Knockout血清替代品(Knockout serum replacement, KSR)代替胚胎干细胞(Embryonic stem cells, ES cell)培养液中的胎牛血清(FBS)和向含KSR的基础培养液中添加40%的小鼠ES细胞条件培养液(ES cell conditioned medium, ESCCM)对绵羊类ES细胞分离、克隆效率的影响。发现使用含FBS的基础培养液最多可以把绵羊类ES细胞传至3代, 而使用KSR和添加ESCCM能促进绵羊类ES细胞的分离和克隆, 所获得的类ES细胞分别可稳定传至第5和8代。同时对类ES细胞进行核型分析、AKP染色及体外分化能力检测, 证实所分离的类ES细胞符合ES细胞的主要特征。由此认为, 与FBS相比KSR更加适于绵羊类ES细胞的分离与培养; 而小鼠ES细胞在生长过程中可能分泌某些重要的细胞因子, 从而达到促进绵羊ES细胞增值的作用。  相似文献   

14.
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.  相似文献   

15.
Human feeder layers for human embryonic stem cells   总被引:39,自引:0,他引:39  
Human embryonic stem (hES) cells hold great promise for future use in various research areas, such as human developmental biology and cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast (MEF) feeder layers, which permit continuous growth in an undifferentiated stage. To use these unique cells in human therapy, an animal-free culture system must be used, which will prevent exposure to mouse retroviruses. Animal-free culture systems for hES cells enjoy three major advantages in the basic culture conditions: 1). the ability to grow these cells under serum-free conditions, 2). maintenance of the cells in an undifferentiated state on Matrigel matrix with 100% MEF-conditioned medium, and 3). the use of either human embryonic fibroblasts or adult fallopian tube epithelial cells as feeder layers. In the present study, we describe an additional animal-free culture system for hES cells, based on a feeder layer derived from foreskin and a serum-free medium. In this culture condition, hES cells maintain all embryonic stem cell features (i.e., pluripotency, immortality, unlimited undifferentiated proliferation capability, and maintenance of normal karyotypes) after prolonged culture of 70 passages (>250 doublings). The major advantage of foreskin feeders is their ability to be continuously cultured for more than 42 passages, thus enabling proper analysis for foreign agents, genetic modification such as antibiotic resistance, and reduction of the enormous workload involved in the continuous preparation of new feeder lines.  相似文献   

16.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

17.
Embryonic stem cells (ESCs) are an attractive source for tissue regeneration and repair therapies because they can be differentiated into virtually any cell type in the adult body. However, for this approach to succeed, the transplanted ESCs must survive long enough to generate a therapeutic benefit. A major obstacle facing the engraftment of ESCs is transplant rejection by the immune system. Here we show that blocking leukocyte costimulatory molecules permits ESC engraftment. We demonstrate the success of this immunosuppressive therapy for mouse ESCs, human ESCs, mouse induced pluripotent stem cells (iPSCs), human induced pluripotent stem cells, and more differentiated ESC/(iPSCs) derivatives. Additionally, we provide evidence describing the mechanism by which inhibition of costimulatory molecules suppresses T cell activation. This report describes a short-term immunosuppressive approach capable of inducing engraftment of transplanted ESCs and iPSCs, providing a significant improvement in our mechanistic understanding of the critical role costimulatory molecules play in leukocyte activation.  相似文献   

18.
Here, we present evidence that the tumor-like growth of mouse embryonic stem cells (mESCs) is suppressed by short-term serum-free culture, which is reversed by pharmacological inhibition of Gsk3β. Mouse ESCs maintained under standard conditions using fetal bovine serum (FBS) were cultured in a uniquely formulated chemically-defined serum-free (CDSF) medium, namely ESF7, for three passages before being subcutaneously transplanted into immunocompromised mice. Surprisingly, the mESCs failed to produce teratomas for up to six months, whereas mESCs maintained under standard conditions generated well-developed teratomas in five weeks. Mouse ESCs cultured under CDSF conditions maintained the expression of Oct3/4, Nanog, Sox2 and SSEA1, and differentiated into germ cells in vivo. In addition, when mESCs were cultured under CDSF conditions supplemented with FBS, or when the cells were cultured under CDSF conditions followed by standard culture conditions, they consistently developed into teratomas. Thus, these results validate that the pluripotency of mESCs was not compromised by CDSF conditions. Mouse ESCs cultured under CDSF conditions proliferated significantly more slowly than mESCs cultured under standard conditions, and were reminiscent of Eras-null mESCs. In fact, their slower proliferation was accompanied by the downregulation of Eras and c-Myc, which regulate the tumor-like growth of mESCs. Remarkably, when mESCs were cultured under CDSF conditions supplemented with a pharmacological inhibitor of Gsk3β, they efficiently proliferated and developed into teratomas without upregulation of Eras and c-Myc, whereas mESCs cultured under standard conditions expressed Eras and c-Myc. Although the role of Gsk3β in the self-renewal of ESCs has been established, it is suggested with these data that Gsk3β governs the tumor-like growth of mESCs by means of a mechanism different from the one to support the pluripotency of ESCs.  相似文献   

19.
BRL条件培养基在ES细胞培养中的应用方法探讨   总被引:1,自引:0,他引:1  
目的:探讨布法罗大鼠肝细胞条件培养基(Buffalo rat liver cell conditioned medium,BRL)在ES细胞培养中的应用方法。方法:ES细胞复苏后分别培养在BRL条件培养基、小鼠胚胎成纤维细胞饲养层(mouse enbryonic fibroblast,MEF)及合并应用BRL条件培养基和MEF饲养层的环境中,通过细胞计数、拟胚体计数和ES细胞集落边缘细胞分化状态比较ES细胞在三种培养基中生长和分化差异。结果:与BRL组比较,MEF组和BRL+MEF组细胞生长较快(P<0.01),ES细胞集落边缘分化细胞较少;MEF组和BRL+MEF组无明显差异。结论:在复苏后早期阶段ES细胞培养中,不宜单独应用BRL条件培养基,须用MEF饲养层或合并应用BRL条件培养基和MEF饲养层。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号