共查询到20条相似文献,搜索用时 0 毫秒
1.
Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis, genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active. 相似文献
2.
3.
Royall T. Moore 《Antonie van Leeuwenhoek》1997,72(3):209-218
In this report the phrase evolutionary advances; is used in three ways: 1. to describe monophyletic changes perceived within a lineage; 2. to describe evolutionary sequences that appear to have become parallel/convergent; 3. to describe major transitions inferred between primary taxa. In monophyletic evolution the changes occur within a specific lineage that arises from a common ancestor, e.g., modern Man, horses, rusts. In parallel/convergent evolution different lineages respond similarly over time to environmental challenges and opportunities and come to acquire a great deal of comparability (e.g., Webster, 1987). Such lineages may be designated as separate taxa, e.g., similarities in marsupial and placental carnivores, or, if the polyphyleticism is cryptic, as a collective taxon, e.g., Aves, the class of birds, the obsolete Amentiferae for catkin bearing plants, the Gasteromycetes, and lichens. In major transitions there are significant paradigm shifts in which evolutionary changes from one predominant life style pattern to another are accompanied by increases in complexity (see Smith & Szatháry, 1995), e.g., symbiosis, the water to land transition, the changes between the phyla of land fungi. Three particular terms are used in evaluating evolutionary relationships (Moore, 1996a): homology, paramology, and analogy. Homology, from Darwin';s theory of common descent, is the phenomenon of having a common historical origin but not necessarily the same final structure or function (e.g., vertebrate forelimbs). Paramology (Moore, 1971) applies to inferred relationships in evolutionary schemes based on contemporary forms that lack fossil antecedents, e.g., the various phylogenetic interpretations of prokaryotes, algae, and fungi; Boekhout et al. (1993) have evaluated the taxonomic resolution of a variety of morphologic, biochemical, physiological, and molecular characters (Table 1). Analogy is generally applied to similar forms that are unrelated, e.g., insect/vertebrate wings; prokaryote/eukaryote flagella. It should also be borne in mind that, in a given taxon, biotrophism (Coffey, 1975) is an advanced character (Heath, 1987) over, respectively, weaker parasitism, symbiotism, commensalism, and freeliving and that seemingly simple or less differentiated forms can be, and more than likely than not are, reduced, polyphyletic, and specialized rather than ancient and rudimentary, e.g., yeasts (Hoog et al., 1988; Kurtzman & Fell, 1996; Moore, 1988b; 1996a). 相似文献
4.
5.
Ereck Chakauya Katy M. Coxon Heather M. Whitney Jennifer L. Ashurst Chris Abell Alison G. Smith 《Physiologia plantarum》2006,126(3):319-329
Pantothenate (vitamin B5 ) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. Plants and microorganisms make the vitamin de novo, whereas animals must obtain it from their diet. Pantothenate is produced commercially by chemical synthesis for vitamin supplements, feed additives and cosmetics. An attractive alternative for production is biotransformation, which would avoid expensive procedures for separation of racemic intermediates. The biosynthetic pathway in bacteria, comprising four enzymic reactions, is well-established, and enzymes from Escherichia coli have been fully characterized including the overexpression and purification of recombinant enzymes and the determination of their X-ray crystal structures. Pantothenate biosynthesis in higher plants is beginning to be elucidated, and genes encoding the first and last enzymes have been identified and characterized in Arabidopsis thaliana and Oryza sativa (rice). This review describes our current understanding of the pathway in plants and the challenges that lie ahead in engineering plants to make increased amounts of the vitamin. 相似文献
6.
Dairi T Hamano Y Kuzuyama T Itoh N Furihata K Seto H 《Journal of bacteriology》2001,183(20):6085-6094
A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibiotic, terpentecin (TP) producer (Y. Hamano, T. Dairi, M. Yamamoto, T. Kawasaki, K Kaneda, T. Kuzuyama, N. Itoh, and H. Seto, Biosci. Biotech. Biochem. 65:1627-1635, 2001). Sequence analysis in the upstream region of the cluster revealed seven new ORFs, ORF8 to ORF14, which were suggested to encode TP biosynthetic genes. We constructed two mutants, in which ORF11 and ORF12, which encode a protein showing similarities to eukaryotic diterpene cyclases (DCs) and a eubacterial pentalenene synthase, respectively, were inactivated by gene disruptions. The mutants produced no TP, confirming that these cyclase genes are essential for the production of TP. The two cyclase genes were also expressed in Streptomyces lividans together with the GGDP synthase gene under the control of the ermE* constitutive promoter. The transformant produced a novel cyclic diterpenoid, ent-clerod-3,13(16),14-triene (terpentetriene), which has the same basic skeleton as TP. The two enzymes, each of which was overproduced in Escherichia coli and purified to homogeneity, converted GGDP into terpentetriene. To the best of our knowledge, this is the first report of a eubacterial DC. 相似文献
7.
8.
Undoubtedly, drought is one of the prime abiotic stresses in the world. Crop yield losses due to drought stress are considerable. Although a variety of approaches have been used to alleviate the problem of drought, plant breeding, either conventional breeding or genetic engineering, seems to be an efficient and economic means of tailoring crops to enable them to grow successfully in drought-prone environments. During the last century, although plant breeders have made ample progress through conventional breeding in developing drought tolerant lines/cultivars of some selected crops, the approach is, in fact, highly time-consuming and labor- and cost-intensive. Alternatively, marker-assisted breeding (MAB) is a more efficient approach, which identifies the usefulness of thousands of genomic regions of a crop under stress conditions, which was, in reality, previously not possible. Quantitative trait loci (QTL) for drought tolerance have been identified for a variety of traits in different crops. With the development of comprehensive molecular linkage maps, marker-assisted selection procedures have led to pyramiding desirable traits to achieve improvements in crop drought tolerance. However, the accuracy and preciseness in QTL identification are problematic. Furthermore, significant genetic × environment interaction, large number of genes encoding yield, and use of wrong mapping populations, have all harmed programs involved in mapping of QTL for high growth and yield under water limited conditions. Under such circumstances, a transgenic approach to the problem seems more convincing and practicable, and it is being pursued vigorously to improve qualitative and quantitative traits including tolerance to biotic and abiotic stresses in different crops. Rapid advance in knowledge on genomics and proteomics will certainly be beneficial to fine-tune the molecular breeding and transformation approaches so as to achieve a significant progress in crop improvement in future. Knowledge of gene regulation and signal transduction to generate drought tolerant crop cultivars/lines has been discussed in the present review. In addition, the advantages and disadvantages as well as future prospects of each breeding approach have also been discussed. 相似文献
9.
10.
植物受体蛋白激酶的研究进展 总被引:1,自引:0,他引:1
在植物中存在一种由胞外结构域、跨膜区域和胞内的蛋白激酶区域三部分组成的跨膜受体蛋白激酶(receptor-lik protein kinases,RLKs)。该蛋白一方面作为胞外特异配基的受体,同时本身又是一种蛋白激酶。研究表明,植物细胞中的RLKs可能参与了植物细胞抗逆反应,植物形态发生、自交不亲和等生理生化反应,作者将从RLKs的结构、种类,基因表达方式及其植物生长和发育过程中的作用做简要介绍。 相似文献
11.
高等植物纤维素合成的最新研究进展 总被引:4,自引:0,他引:4
继1996年从棉花和水稻中克隆出β-葡糖基转移酶基因cel A后,1998年又从拟南芥细胞壁突变体中鉴定出了cel A的同源基因RSW1。这两项研究充分表明,cel A与高等植物的纤维素合成有关。cel类(cel A-like)超基因家族的蛋白质都具有与底物相结合和催化有关的保守功能域。纤维素离体合成方面的研究进展虽然揭示了包括纤维素在内的多糖生物合成机制的某些方面,但活体的纤维素合成还涉及许多其 相似文献
12.
植物无融合生殖研究新进展 总被引:1,自引:0,他引:1
无融合生殖是指不经过雌雄配子融合而产生种子的一种特殊生殖方式,能使基因型的杂合性得以保持,从而可以固定杂种优势,对作物育种具有极其重要的意义。目前大量的研究都在设法将无融合生殖作为一种重要的植物育种手段。本文对近几年来无融合生殖新种质资源的发现、主要研究方法、遗传机制和相关基因等方面的最新进展作了介绍,并对无融合生殖研究中存在的问题和发展前景作了讨论。 相似文献
13.
《Trends in biotechnology》1986,4(11):285-288
Recently, considerable research effort has focused on the molecular genetics of filamentous fungi of industrial importance. Intense research was initiated following reports of transformation systems for the non-commercial filamentous fungi Neurospora crassa and Aspergillus nidulans, and was prompted by two principle considerations: (1) the possibility of exploiting the inherent ability of many filamentous fungi to secrete copious quantities of protein in submerged culture, and (2) the disappointing yields of many heterologous proteins when secreted from prokaryotic and yeast expression systems. 相似文献
14.
BARD1 (BRCA1 associated RING domain protein 1), as an important animal tumor suppressor gene associated with many kinds of cancers, has been intensively studied for decades. Surprisingly, homolog of BARD1 was found in plants and it was renamed AtROW1 (repressor of Wuschel-1) according to its extremely important function with regard to plant stem cell homeostasis. Although great advances have been made in human BARD1, the function of this animal tumor-suppressor like gene in plant is not well studied and need to be further elucidated. Here, we review and summarize past and present work regarding this protein. Apart from its previously proposed role in DNA repair, recently it is found essential for shoot and root stem cell development and differentiation in plants. The study of AtROW1 in plant may provide an ideal model for further elucidating the functional mechanism of BARD1 in mammals. 相似文献
15.
Structure and expression of ubiquitin genes in higher plants 总被引:13,自引:0,他引:13
cDNA clones encoding ubiquitin were isolated from a barley leaf cDNA library using a mammalian ubiquitin cDNA clone as probe. The nucleotide sequence of one of the clones codes for 2.2 perfect repeats of the 76-amino-acid-long ubiquitin protein with an extra lysine residue at the C-terminus. The barley ubiquitin amino acid sequence differs from the animal sequence at three positions and from the yeast sequence at two positions. The ubiquitin poly(precursor) are coded by a multigene family with 8-10 genes that produce four or five different size messengers between 700 and 2000 nucleotides in length. The large poly(A)-rich RNAs are constitutively expressed in vegetative tissues whereas the 700-nucleotide messenger(s) were only detected in tissues containing dividing cells. 相似文献
16.
17.
根压是植物根部产生的一种静水压力,广泛存在于多种植物中。在蒸腾作用很弱的情况下,根压不但可驱动水分从根部流向冠层叶片,缓解因白天强烈蒸腾而导致的水分亏缺,而且在木质部导管栓塞修复方面具有重要作用。虽然国内外学者对根压的产生已有一些解释,普遍接受的观点有渗透理论、代谢理论和水分向上共同运输假说等,但根压产生的机制至今仍是科学家争议的焦点之一。根压的测定方法虽有直接和间接测定、损伤和无损伤测定之分,但较为先进的根压测定技术仍需进一步改善和提升。受水通道蛋白、遗传因素、生境等因素的影响,根压的大小存在差异,即使是较低的根压也会影响农作物生长。在促进转运蛋白质、酶、氨基酸、激素及钙元素等在农作物木质部和韧皮部之间流通方面,适当大小的根压发挥重要作用,且有助于提高农作物产量。因此,加深对植物根压的认识和理解具有重要的生物学意义。该文从根压的定义和产生机制、具有根压的植物类群、根压的测定方法和大小、影响根压的主要因素及根压在植物科学研究领域的意义和影响等多个方面分别进行了归纳总结,并结合当前研究热点和研究成果,针对植物根压研究过程中遇到的问题和后续研究趋势及方向进行了展望。 相似文献
18.
19.
利钠肽家族是一组由心肌细胞分泌的激素,主要包括A型、B型和C型利钠肽,具有相似的基因结构和生理学效应,可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性,调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽,通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示,其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化,与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制,为临床诊疗开辟新思路。 相似文献
20.
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。 相似文献