首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review we discuss the use of non-coding DNA at the intraspecific level in plants. Both nuclear and organelle non-coding regions are widely used in interspecific phylogenetic approaches. However, they are also valuable in analyses on the intraspecific level. Besides taxonomy, that is, defining subspecies or varieties, large fields for the application of non-coding DNA are population genetic and phylogeographic studies. Population genetics tries to explain the genetic patterns within species mostly by the amount of extant gene flow among populations, while phylogeography explicitly tries to reconstruct historic events. Depending on the study different molecular markers can be used, varying between very fast evolving microsatellites or some more slowly changing regions like intergenic spacers and introns. Here, we focus mainly on the use of non-coding regions in phylogeographic analyses. Mostly used in this context are regions of the genomes of the chloroplasts and mitochondria. In phylogeography, the correct estimation of allele or haplotype relationships is particularly important. As tree-based methods are mostly insufficient to depict relationships within species, network approaches are better suitable to infer gene or locus genealogies. Problematic for phylogeographic studies are alleles shared among multiple species, which could result from either hybridization or incomplete lineage sorting. Especially the latter can severely influence the interpretation of the phylogeographic patterns. Therefore, it seems necessary for us to also include close relatives of the species under study in phylogeographic analyses. Not only the sample design but also the analysis methods are currently changing, as some new methods such as statistical phylogeography were emerging recently and widely used methods like nested clade analysis might not be reliable in every case. During the last few years, a multitude of studies were published, which mainly analyzed phylogeographic patterns in European and North American plants. Phylogeographic studies in other regions of the earth are still comparably rare, although questions like the influence of the ice age on the vegetation in the tropics or southern hemisphere are still open and phylogeography provides an excellent remedy to answer them.  相似文献   

2.
Classical budburst models (Spring Warming, Sequential, Parallel and Alternating) are unable to fully predict external data, partly because of the methods of optimization used to adjust them. The purpose of this study was to examine different assumptions of budburst models and select those which are best supported by the data, defining new models able to predict external data. Eight models, each differing in one assumption, were fitted and tested using external data. The dataset used to test the models was deduced from aeropalynological data at two stations in France. The results show that some of the models proposed are able to accurately predict external dates of flowering of most of the studied species. The assumptions of those models have been individually tested and shown to improve the models accuracy. Robust estimates of the best predictor models of 12 tree species are presented. The analysis of hypothetical provenance transfer of two species, Buxus sempervirens and Platanus acerifolia, between the two study sites, shows that P. acerifolia estimates are similar in both environments whereas B. sempervirens estimates are variable. This result, which agrees with the genetic characteristics of both species, shows that local adaptation of phenology can also be studied through modelling approaches.  相似文献   

3.
The oceans of the world are nutrient-limited environments that support a dynamic diversity of microbial life. Heterotrophic prokaryotes proliferate in oligotrophic regions and affect nutrient transformation and remineralization thereby impacting directly on the all marine biota. An important challenge in studying the microbial ecology of oligotrophic environments has been the isolation of ecologically important species. This goal has been recognized not only for its relevance in defining the dynamics of community composition, but for enabling physiological studies of competitive species and inferring their impact on the microbial food web. This review describes the successful isolation attempts of the ultramicrobacterium, Sphingopyxis alaskensis (formerly described as Sphingomonas alaskensis) using extinction dilution culturing methods. It then provides a comprehensive perspective of the unique physiological and genetic properties that have been identified that distinguish it from typical copiotrophic species. These properties are described through studies of the growth phase and growth rate control of macromolecular synthesis, stress resistance and global gene expression (proteomics). We also discuss the importance of integrating ecological and physiological approaches for studying microorganisms in marine environments.  相似文献   

4.
There is no widely accepted concept of species for prokaryotes, and assignment of isolates to species is based on measures of phenotypic or genome similarity. The current methods for defining prokaryotic species are inadequate and incapable of keeping pace with the levels of diversity that are being uncovered in nature. Prokaryotic taxonomy is being influenced by advances in microbial population genetics, ecology and genomics, and by the ease with which sequence data can be obtained. Here, we review the classical approaches to prokaryotic species definition and discuss the current and future impact of multilocus nucleotide-sequence-based approaches to prokaryotic systematics. We also consider the potential, and difficulties, of assigning species status to biologically or ecologically meaningful sequence clusters.  相似文献   

5.
Statistical species delimitation usually relies on singular data, primarily genetic, for detecting putative species and individual assignment to putative species. Given the variety of speciation mechanisms, singular data may not adequately represent the genetic, morphological and ecological diversity relevant to species delimitation. We describe a methodological framework combining multivariate and clustering techniques that uses genetic, morphological and ecological data to detect and assign individuals to putative species. Our approach recovers a similar number of species recognized using traditional, qualitative taxonomic approaches that are not detected when using purely genetic methods. Furthermore, our approach detects groupings that traditional, qualitative taxonomic approaches do not. This empirical test suggests that our approach to detecting and assigning individuals to putative species could be useful in species delimitation despite varying levels of differentiation across genetic, phenotypic and ecological axes. This work highlights a critical, and often overlooked, aspect of the process of statistical species delimitation—species detection and individual assignment. Irrespective of the species delimitation approach used, all downstream processing relies on how individuals are initially assigned, and the practices and statistical issues surrounding individual assignment warrant careful consideration.  相似文献   

6.
The discussion of a population's minimum viable size provides a focus for the study of ecological and genetic factors that influence the persistence of a threatened population. There are many causes of extinction and the fate of a specific population cannot generally be predicted. This uncertainty has been dealt with in two ways: through stochastic demographic models to determine how to minimize extinction probabilities; and through population genetic theory to determine how best to maintain genetic variation, in the belief that the ability to evolve helps buffer a population against the unknown. Recent work suggests that these two very different approaches lead to very similar conclusions, at least under panmictic conditions. However, defining the ideal spatial distribution for an endangered species remains an important challenge.  相似文献   

7.
Population genetic structure approaches offer the possibility of defining management units in conservation activities of species. The genetic structure of the brown trout Salmo trutta in Galicia (NW Spain) was investigated by using microsatellites. We determined genetic variation across 10 microsatellite loci of 901 individuals from 30 geographical populations representing 18 river basins. The analysis of the spatial distribution of the genetic variation by using different methods clearly revealed strong genetic differentiation among two groups of populations living in the studied area. This result is concordant with previous work using allozymes and mtDNA markers, and confirms a secondary contact among two highly differentiated evolutionary lineages in Miño Basin. Although both lineages might be locally adapted, results suggest that they hybridize at the middle course of the river. The brown trout from the Upper Miño Basin belongs to the previously described Duero lineage, an Iberian endemism threatened by introgression with other Atlantic forms. The results support the recognition of the Upper Miño Basin as a particular biotic region in Galicia. This study illustrates how a multidisciplinary approach in spatial genetic analysis contributes to the delineation of conservation units as conspecific metapopulations.  相似文献   

8.
Modern genetic and immunological techniques have become important tools for assessing protistan species diversity for both the identification and quantification of specific taxa in natural microbial communities. Although these methods are still gaining use among ecologists, the new approaches have already had a significant impact on our understanding of protistan diversity and biogeography. For example, genetic studies of environmental samples have uncovered many protistan phylotypes that do not match the DNA sequences of any cultured organisms, and whose morphological identities are unknown at the present time. Additionally, rapid and sensitive methods for detecting and enumerating taxa of special importance (e.g. bloom-forming algae, parasitic protists) have enabled much more detailed distributional and experimental studies than have been possible using traditional methods. Nevertheless, while the application of molecular approaches has advanced some aspects of aquatic protistan ecology, significant issues still thwart the widespread adoption of these approaches. These issues include the highly technical nature of some of the molecular methods, the reconciliation of morphology-based and sequence-based species identifications, and the species concept itself.  相似文献   

9.
Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation.  相似文献   

10.
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.  相似文献   

11.
Exploiting the association between single nucleotide polymorphisms (SNP) can potentially reduce the costs of association mapping of common disease genes. Different methods have been proposed for defining subsets of SNPs as proxies (or tagSNPs) for other SNPs, some of which rely upon a model of haplotype blocks. Other approaches only consider the pair-wise correlation between markers as a basis for selecting tagSNPs. Yet another, recently proposed model-based method takes marker heterozygosity and genetic distance into account in order to maximize the expected utility of a marker set to map frequent, but unobserved genetic variants. We compared these tagging approaches with regard to their ability to correlate tagSNPs and bi-allelic, potentially disease-causing genetic variants. We used the CEU sample of chromosome 19 from the HapMap project for an initial comparison, and demonstrated a comparable performance of both approaches but a difference in terms of tagSNPs selected and variants captured. In any case, we conclude that a considerable loss of information appears to be inherent to any type of SNP tagging, even when dense marker sets are available for SNP selection.  相似文献   

12.
Genetic diversity is a key parameter to delineate management units, but many organisms also display ecological characteristics that may reflect potential local adaptations. Here, we used ecological and genetic information to delineate management units for a complex system involving several ecotypes of caribou (Rangifer tarandus) from Québec and Labrador, eastern Canada. We genotyped 560 caribou at 16 microsatellite loci and used three Bayesian clustering methods to spatially delineate and characterize genetic structure across the landscape. The different approaches employed did not converge on the same solution, and differed in the number of inferred genetic clusters that best fit the dataset but also in the spatial distribution of genetic variation. We reconciled variability among the methods using a synthetic approach that considers the sum of the partitions obtained by each of them and retrieved six genetically distinct groups that differ in their spatial extent across the range of caribou in the study area. These genetic groups are not consistent with the presently defined ecological designations for this species. Combining both genetic and ecological criteria, we distinguished eight independent management units. Overall, the management units we propose should be the focus of conservation and management actions aimed to maximize genetic and ecological diversity and ensure the persistence of caribou populations inhabiting increasingly disturbed landscapes.  相似文献   

13.
刘山林  邱娜  张纾意  赵竹楠  周欣 《生物多样性》2022,30(10):22441-4522
在分子生物学、细胞生物学、微生物学、遗传学等学科的推动下, 生物多样性研究从仅关注宏观表型的博物学, 迅速演化为涵盖生态系统、物种和遗传多样性等多个维度的综合性生命科学。组学技术, 尤其是DNA测序技术的更新和发展, 使获取DNA序列所需的成本大幅下降, 促进了近年来其在生物多样性研究中取得的一系列令人瞩目成就。本文将从物种水平的遗传多样性和群落水平的物种多样性两个层面总结和介绍与DNA相关的组学技术在生物多样性研究中的一些创新和应用。其中, 物种水平主要是总结单一个体的基因组和单物种多个体在时空多个维度上的群体遗传研究; 而群落水平的物种多样性层面主要总结现有的分子鉴定技术(metabarcoding, eDNA, iDNA等), 以及上述新技术在群落多样性评估、旗舰保护物种监测以及物种间相互作用关系等研究中的应用。  相似文献   

14.
Analysing genomic variation within and between sister species is a first step towards understanding species boundaries. We focused on two sister species of cold‐resistant leaf beetles, Gonioctena quinquepunctata and G. intermedia, whose ranges overlap in the Alps. A previous study of DNA sequence variation had revealed multiple instances of mitochondrial genome introgression in this region, suggesting recent hybridization between the two species. To evaluate the extent of gene exchange resulting from these hybridization events, we sampled individuals of both species inside and outside the hybrid zone and analysed genomic variation among them using RAD‐seq markers. Individual levels of introgression in the nuclear genome were estimated first by defining species‐specific SNPs (displaying a fixed difference between species) a priori and second by using model‐based methods. Both types of analyses indicated little gene exchange, if any, between species at the level of the nuclear genome. Whereas the first method suggested slightly more gene flow, we argue that it has likely overestimated introgression in the phylogeographic context of this study. We conclude that strong intrinsic barriers prevent genetic exchange at the level of the nuclear genome between the two species. The apparent discrepancy observed between introgression occurring in the nuclear and mitochondrial genomes could be explained by selection acting in favour of the latter. Also, these results have consequences for the phylogeographic study of each species, since we can assume that genetic diversity in the overlapping portion of their ranges is not the product of introgression.  相似文献   

15.
Species delimitation is at the core of biological sciences. During the last decade, molecular‐based approaches have advanced the field by providing additional sources of evidence to classical, morphology‐based taxonomy. However, taxonomy has not yet fully embraced molecular species delimitation beyond threshold‐based, single‐gene approaches, and taxonomic knowledge is not commonly integrated into multilocus species delimitation models. Here we aim to bridge empirical data (taxonomic and genetic) with recently developed coalescent‐based species delimitation approaches. We use the multispecies coalescent model as implemented in two Bayesian methods (dissect/stacey and bp&p ) to infer species hypotheses. In both cases, we account for phylogenetic uncertainty (by not using any guide tree) and taxonomic uncertainty (by measuring the impact of using a priori taxonomic assignments to specimens). We focus on an entire Neotropical tribe of butterflies, the Haeterini (Nymphalidae: Satyrinae). We contrast divergent taxonomic opinion – splitting, lumping and misclassifying species – in the light of different phenotypic classifications proposed to date. Our results provide a solid background for the recognition of 22 species. The synergistic approach presented here overcomes limitations in both traditional taxonomy (e.g. by recognizing cryptic species) and molecular‐based methods (e.g. by recognizing structured populations, and not raising them to species). Our framework provides a step forward towards standardization and increasing reproducibility of species delimitations.  相似文献   

16.
The haemoglobin systems of the order Clupeiformes have been studied by several researchers in 41 species belonging to three out of its five families. Most of them were investigated in the native form using electrophoretic methods, and a few were also examined from the functional point of view. Both approaches corroborate the widespread view that acidic and basic haemoglobin components, which are structurally and functionally distinct, may be present in teleost fish. However, the former are always present, whereas the latter are often lacking, depending on the taxonomic group. Both kinds of components are found in families Clupeidae and Pristigasteridae, but only acidic ones in Engraulidae.Most electrophoretic patterns show high multiplicity, and chiefly concern the acidic components. Ontogenetic variation was described in three species. Individual variants were also observed in other species, although some of these might be due to ontogenetic variations rather than genetic polymorphism.  相似文献   

17.
Genetic time‐series data from historical samples greatly facilitate inference of past population dynamics and species evolution. Yet, although climate and landscape change are often touted as post‐hoc explanations of biological change, our understanding of past climate and landscape change influences on evolutionary processes is severely hindered by the limited application of methods that directly relate environmental change to species dynamics through time. Increased integration of spatiotemporal environmental and genetic data will revolutionize the interpretation of environmental influences on past population processes and the quantification of recent anthropogenic impacts on species, and vastly improve prediction of species responses under future climate change scenarios, yielding widespread revelations across evolutionary biology, landscape ecology and conservation genetics. This review encourages greater use of spatiotemporal landscape genetic analyses that explicitly link landscape, climate and genetic data through time by providing an overview of analytical approaches for integrating historical genetic and environmental data in five key research areas: population genetic structure, demography, phylogeography, metapopulation connectivity and adaptation. We also include a tabular summary of key methodological information, suggest approaches for mitigating the particular difficulties in applying these techniques to ancient DNA and palaeoclimate data, and highlight areas for future methodological development.  相似文献   

18.
We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.  相似文献   

19.
Genetic approaches to controlling the transmission of mosquito-borne diseases are being developed to augment the available chemical control practices and environmental manipulation methods. Much progress has been made in laboratory-based research that seeks to develop antipathogen or antivector effector genes and methods for genetically manipulating host vector strains. Research is summarized here in the development of a malaria-resistant phenotype using as a model system the avian parasite, Plasmodium gallinaceum, and the mosquito, Aedes aegypti. Robust transformation technology based on a number of transposable elements, the identification of promoter regions derived from endogenous mosquito genes, and the development of single-chain antibodies as effector genes have made it possible to produce malaria-resistant mosquitoes. Future challenges include discovery of methods for spreading antiparasite genes through mosquito populations, determining the threshold levels below which parasite intensities of infection must be held, and defining the circumstances in which a genetic control strategy would be employed in the field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号