首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene therapy for Parkinson's disease   总被引:4,自引:0,他引:4  
Gene therapy is a potentially powerful approach to the treatment of neurological diseases. The discovery of neurotrophic factors inhibiting neurodegenerative processes and neurotransmitter-synthesizing enzymes provides the basis for current gene therapy strategies for Parkinson's disease. Genes can be transferred by viral or nonviral vectors. Of the various possible vectors, recombinant retroviruses are the most efficient for genetic modification of cells in vitro that can thereafter be used for transplantation (ex vivo gene therapy approach). Recently, in vivo gene transfer to the brain has been developed using adenovirus vectors. One of the advantages of recombinant adenovirus is that it can transduced both quiescent and actively dividing cells, thereby allowing both direct in vivo gene transfer and ex vivo gene transfer to neural cells. Probably because the brain is partially protected from the immune system, the expression of adenoviral vectors persists for several months with little inflammation. Novel therapeutic tools, such as vectors for gene therapy have to be evaluated in terms of efficacy and safety for future clinical trials. These vectors still need to be improved to allow long-term and possibly regulatable expression of the transgene.  相似文献   

2.
3.
Parkinson's disease (PD) is a debilitating neurodegenerative disorder arising from loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of striatal dopamine levels, which results in distressing motor symptoms. The current standard pharmacological treatment for PD is direct replacement of dopamine by treatment with its precursor, levodopa (L-dopa). However, this does not significantly alter disease progression and might contribute to the ongoing pathology. Several features of PD make this disease one of the most promising targets for clinical gene therapy of any neurological disease. The confinement of the major pathology to a compact, localised neuronal population and the anatomy of the basal ganglia circuitry mean that global gene transfer is not required and there are well-defined sites for gene transfer. The multifactorial aetiology of idiopathic PD means that it is unlikely any single gene will cure the disease, and as a result at least three separate gene-transfer strategies are currently being pursued: transfer of genes for enzymes involved in dopamine production; transfer of genes for growth factors involved in dopaminergic cell survival and regeneration; and transfer of genes to reset neuronal circuitry by switching cellular phenotype. The merits of these strategies are discussed here, along with remaining hurdles that might impede transfer of gene therapy technology to the clinic as a treatment for PD.  相似文献   

4.
The molecular mechanisms of Duchenne muscular dystrophy (DMD) have been extensively investigated since the discovery of the dystrophin gene in 1986. Nonetheless, there is currently no effective treatment for DMD. Recent reports, however, indicate that adenoassociated viral (AAV) vector-mediated transfer of a functional dystrophin cDNA into the affected muscle is a promising strategy. In addition, antisense-mediated exon skipping technology has been emerging as another promising approach to restore dystrophin expression in DMD muscle. Ongoing clinical trials show restoration of dystrophin in DMD patients without serious side effects. Here, we summarize the recent progress in gene therapy, with an emphasis on exon skipping for DMD.  相似文献   

5.
Proteome analysis is usually performed by separating complex cellular protein extracts by two-dimensional-electrophoresis followed by protein identification using mass spectrometry. In this way proteins are compared from normal and diseased tissue in order to detect disease related protein changes. In a strict sense, however, this procedure cannot be called proteome analysis: the tools of proteomics are used just to detect some interesting proteins which are then investigated by protein chemistry as usual. Real proteome research would be studying the cellular proteome as a whole, its composition, organization and its kind of action. At present however, we have no idea how a proteome works as a whole; we have not even a theory about that. If we would know how the proteome of a cell type is arranged, we probably would alter our strategy to detect and analyze disease-related proteins. I will present a theory of proteomics and show some results from our laboratory which support this theory. The results come from investigations of the mouse brain proteome and include mouse models for neurodegenerative diseases.  相似文献   

6.
The aim of this paper is to test whether an alteration of blood flow in microcirculation and in particular of red cell deformability is present in chronic arterial occlusive disease. To this end we determined by the method proposed by Reid and Dormandy (J. Clin. Pharmacol. 1976, 29, 855) whole-blood filterability in 18 patients with peripheral vascular disease, in 15 clinically healthy subjects and in 99 subjects without clinical evidence of ischemic pathology displaying one or more vascular risk factors. Blood filterability turned out to be significantly lower in cases of arterial disease that in the controls (p less than 0,001), and we found a constant reduction of blood filterability with the increase of number of risk factors. Comparison of the results obtained in arteriopatics and in controls displaying risk factors shows that though risk factors have an important impact on blood filterability, their presence alone is not enough to explain the reduction of blood filterability which, risk factors being equal, in vascular disease is always significantly lower than in controls. We also found a significant correlation between levels of fibrinogen and reduction of blood filterability.  相似文献   

7.
Heart disease is the most common cause of morbidity and mortality in Western society and the incidence is projected to increase significantly over the next few decades as our population ages. Heart failure occurs when the heart is unable to pump blood at a rate to commensurate with tissue metabolic requirements and represents the end stage of a variety of pathological conditions. Causes of heart failure include ischemia, hypertension, coronary artery disease, and idiopathic dilated cardiomyopathy. Hypertension and ischemia both cause infarction with loss of function and a consequent contractile deficit that promotes ventricular remodeling. Remodeling results in dramatic alterations in the size, shape, and composition of the walls and chambers of the heart and can have both positive and negative effects on function. In 30-40% of patients with heart failure, left ventricular systolic function is relatively unaffected while diastolic dysfunction predominates. Recent progress in our understanding of the molecular and cellular bases of heart disease has provided new therapeutic targets and led to novel approaches including the delivery of proteins, genes, and cells to replace defective or deficient components and restore function to the diseased heart. This review focuses on three such strategies that are currently under development: (a) gene transfer to modulate contractility, (b) therapeutic angiogenesis for the treatment of ischemia, and (c) embryonic and adult stem cell transfer to replace damaged myocardium.  相似文献   

8.
Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.  相似文献   

9.
10.
Coronary artery disease (CAD) and peripheral arterial disease (PAD) are significant medical problems worldwide. Although substantial progress has been made in prevention as well as in the treatment, particularly of CAD, there are a large number of patients, who despite maximal medical treatment have substantial symptomatology and who are not candidates for mechanical revascularization. Therapeutic angiogenesis represents a novel, conceptually appealing treatment option. Ad(GV)VEGF121.10 (BIOBYPASS) is an adenovector, carrying the transgene encoding for human vascular endothelial growth factor 121 (VEGF(121)). A number of preclinical studies have demonstrated angiogenic activity of BIOBYPASS, not only anatomically but also functionally. Phase I clinical studies have demonstrated that intramyocardial infection of BIOBYPASS in patients with severe CAD as well as intramuscular injections of BIOBYPASS in patients with severe peripheral vascular disease (PVD) was well tolerated; furthermore, these studies provided some intriguing indications of activity, which led to initiation of major randomized Phase II "proof-of-concept" studies. This paper provides a review of the rationale behind BIOBYPASS as well as a summary of pertinent preclinical and early clinical data.  相似文献   

11.
12.
The last decade has witnessed a dramatic increase in the mechanistic understanding of angiogenesis and arteriogenesis, the two processes by which the body responds to obstruction of large conduit arteries. This knowledge has been translated into novel therapeutic approaches to the treatment of peripheral arterial disease, a condition characterized by progressive narrowing of lower extremity arteries and heretofore solely amenable to surgical revascularization. Clinical trials of molecular, genetic, and cell‐based treatments for peripheral artery obstruction have generally provided encouraging results. J. Cell. Biochem. 108: 753–761, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
The fall in ankle systolic pressure after exercise serves as an objective indicator of the severity of haemodynamically important peripheral arterial disease. Twenty-six patients were studied to establish the effects of different work loads on the pressure response and to develop a test to standardise these effects. The patients walked for one or two minutes at 4 km/h and one or two minutes at 6 km/h, and the fall in pressure was the same when measured immediately after exercise. The time taken for the pressure to return to the pre-exercise value varied. As the fall in pressure occurs after only one minute of exercise at 4 km/h on a 10% slope, this might be adopted as a standard test. It is acceptable to the patient, since claudication, angina, and shortness of breath rarely occur. It is sensitive enough to detect mild or asymptomatic disease and is useful in following up patients.  相似文献   

16.
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.  相似文献   

17.
The relatively new technology of DNA microarrays offers the possibility to probe the human genome for clues to the pathogenesis and treatment of human disease. While early studies using this approach were largely in oncology, many new reports are emerging in other fields including infectious diseases and pharmacology, and applications in autoimmunity have been recently reported by our group and others. Some of these investigations have examined animal models of autoimmune disease, but a number of human studies have also been carried out. Of special interest are those that have used peripheral blood samples because, unlike tissue biopsies, these are readily available from all subjects. Using this approach, patterns of gene expression can be detected that distinguish patients with autoimmune conditions from normal subjects. Furthermore, the genes that are identified provide clues to possible pathogenetic mechanisms and are likely to be useful in developing tests to establish diagnostic categories and predict therapeutic responses.  相似文献   

18.
Recent studies have demonstrated association between ABO blood system and thrombosis, indicating that individuals belonging to non-O blood groups (A, B or AB) present an increased risk of venous thrombosis, heart disease, and ischemic stroke (IS) as compared to O blood group carriers. In this study, we investigated the frequency of ABO blood group polymorphisms and its association with IS and peripheral arterial disease. Significant differences were observed for O1 (OR 0.57, 95 % CI 0.35–0.95, p < 0.05) and O2 (OR 3.47, 95 % CI 1.15–10.28, p < 0.05) alleles among IS patients while significant differences were observed for B phenotype (26.3 vs 9.5 %, OR 3.42, 95 % CI 1.32–8.76, p = 0.01, patients vs controls, respectively) and alleles A1 (OR 0.31, 95 % CI 0.11–0.84, p < 0.05), O2 (OR 4.61, 95 % CI 1.59–13.23, p < 0.01) and B (OR 3.42, 95 % CI 1.62–7.13, p < 0.001) alleles for PAD patients. O1 allele was an independent variable (OR 0.27, 95 % CI 0.12–0.57, p < 0.001) for IS patients. These data suggest the relationship of non-O blood groups in pathogenesis of thrombosis events and a possible protective effect of O blood group.  相似文献   

19.
20.
Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号