首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal differentiation in Drosophila ommatidium   总被引:19,自引:0,他引:19  
Using monoclonal and polyclonal antibodies as differentiation markers, we have found that the eight photoreceptors of the Drosophila ommatidium differentiate in a fixed sequence. The foundation photoreceptor, R8, expresses neural antigens first. The paired photoreceptors R2/5 are next to express, followed by the pair R3/4, followed by the pair R1/6; R7 is the final photoreceptor to differentiate. From previous studies it is known that Drosophila photoreceptors use local, positional cues to select their identities. Together with the morphological picture of ommatidial development, the sequential order of photoreceptor differentiation demonstrated here suggests that these cues may be encoded in the particular combination of cells an undetermined cell finds itself in contact with.  相似文献   

2.
3.
The cell polarity gene,crumbs (crb), has been shown to participate in the development and degeneration of theDrosophila retina. Mutations inCRB1, the human homologue ofDrosophila crb, also result in retinitis pigmentosa and Leber congential amaurosis. In this study, we used the gain-of-function approach to delineate the roles ofcrb in developingDrosophila eye. In the third-instar larval stage, eye development is initiated with photoreceptor differentiation and positioning of photoreceptor nuclei in the apical cellular compartment of retinal epithelium. In the pupal stage, differentiated photoreceptors begin to form the photosensitive structures, the rhabdomeres, at their apical surface. UsingGMR-Gal4 to drive overexpression of the Crb protein at the third-instar eye disc, we found that differentiation of photoreceptors was disrupted and the nuclei of differentiated photoreceptors failed to occupy the apical compartment. Usinghs-Gal4 to drive Crb overexpression in pupal eyes resulted in interference with extension of the adherens junctions and construction of the rhabdomeres, and these defects were stage-dependent. This gain-of-function study has enabled us to delineate the roles of Crb at selective stages of eye development inDrosophila.  相似文献   

4.
The compound eye of Drosophila is a reiterated pattern of 800 unit eyes known as ommatidia. In each ommatidium there are eight photoreceptor neurons (R1–R8) and an invariant number of accessory cells organized in a precise manner. In the developing eye, specification of cell fates is triggered by sequential inductive events mediated by cell-cell interactions. The R8 photoreceptor neuron is the first cell to differentiate and is thought to play a central role in the recruitment of the remaining photoreceptor cells. Our previous work demonstrated that mutations in the retina aberrant in pattern (rap) locus lead to abnormal pattern formation in the compound eye. Genetic mosaic experiments demonstrated that for normal retinal patterning to occur, rap gene function is required only in the photoreceptor cell R8. In this study we analyzed the R cell composition of developing as well as the adult eyes of rap mutants employing a variety of R cell specific markers. We show that in rap mutants, although some of the R8-specific markers show normal expression patterns, other aspects of the R8 cell differentiation are abnormal. In addition, the cells R1, R6, and R7 fail to differentiate properly in rap mutants. These results suggest that the rap gene encodes an R8-specific function that plays a role in the determination of the photoreceptor cells R1, R6, and R7. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
6.
7.
In the developingDrosophilaeye,BarH1andBarH2, paired homeobox genes expressed in R1/R6 outer photoreceptors and primary pigment cells, are essential for normal eye morphogenesis. Here, we show evidence thatBarH1ectopically expressed under the control of thesevenlessenhancer (sev-BarH1) causes two types of cone cell transformation: transformation of anterior/posterior cone cells into outer photoreceptors and transformation of equatorial/polar cone cells into primary pigment cells.sev-BarH1repressed the endogenous expression of theroughhomeobox gene in R3/R4 photoreceptors, while theBarH2homeobox gene was activated bysev-BarH1in an appreciable fraction of extra outer photoreceptors. In primary pigment cells generated by cone cell transformation, the expression ofcut,a homeobox gene specific to cone cells, was completely replaced with that ofBarhomeobox genes. Extra outer photoreceptor formation was suppressed and enhanced, respectively, by reducing the activity of Ras/MAPK signaling and by dosage reduction ofyan,a negative regulator of the pathway, suggesting interactions betweenBarhomeobox genes (cell fate determinants) and Ras/MAPK signaling in eye development.  相似文献   

8.
9.
B J Frankfort  R Nolo  Z Zhang  H Bellen  G Mardon 《Neuron》2001,32(3):403-414
An outstanding model to study how neurons differentiate from among a field of equipotent undifferentiated cells is the process of R8 photoreceptor differentiation during Drosophila eye development. We show that in senseless mutant tissue, R8 differentiation fails and the presumptive R8 cell adopts the R2/R5 fate. We identify senseless repression of rough in R8 as an essential mechanism of R8 cell fate determination and demonstrate that misexpression of senseless in non-R8 photoreceptors results in repression of rough and induction of the R8 fate. Surprisingly, there is no loss of ommatidial clusters in senseless mutant tissue and all outer photoreceptor subtypes can be recruited, suggesting that other photoreceptors can substitute for R8 to initiate recruitment and that R8-specific signaling is not required for outer photoreceptor subtype assignment. A genetic model of R8 differentiation is presented.  相似文献   

10.
During the development of the Drosophila visual system, photoreceptor (retinal) axons (R axons) project retinotopically to their targets in the optic lobes. The establishment of this precise pattern of connections does not depend on interactions between adjacent axon bundles, suggesting that R axons rely on environmental signals for proper pathfinding. Glial cells that are located along the R-axon trajectory are likely candidates to provide guidance cues for R-axon navigation. This study defines the origin of lamina glia (L glia), and demonstrates that L glia migrate into the lamina over a considerable distance. Glia are located in positions at which the R axons make critical growth choices. In the absence of cues from the eye, several classes of glia migrate to their final positions within the optic lobe anlage and begin to differentiate. Our results are consistent with a role for the glia in providing guidance cues to the R axons. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

12.
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid. G. Ugarte and R. Delgado contributed equally to this work.  相似文献   

13.
Summary The generalogical relationships of photoreceptor cells within the compound eye ofDrosophila have been studied using cell labelling, with either3H-thymidine or recessive mutations, during the third larval stage. It has been found that photoreceptor and secondary pigment cells arise from different precursor cells. Under the present experimental conditions, precursors of receptor cells give rise to about 8 elements which differentiate as R cells of two different groups. One of the cells differentiates as R7 and the remaining as any one of the R1 to R6. The last cells behave initially as equivalent, and can differentiate within the same or within different, but neighbouring, ommatidia. The class of R1 to R6 cell in which each one of these elements differentiates, seems to depend on the time of its origin. The implications of these findings for the formation of the ommatidial pattern are discussed.  相似文献   

14.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, βHeavy‐Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (α‐ and β‐Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in α‐ or β‐Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that α‐ and β‐Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas β‐Spectrin is preferentially distributed in the basolateral region. We show that overexpression of β‐Spectrin causes a strong shrinkage of apical membrane domains, and loss of β‐Spectrin causes an expansion of apical domains, implying an antagonistic relationship between β‐Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains. genesis 47:744–750, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Daisuke Yamamoto 《Genetica》1993,88(2-3):153-164
An ommatidium of aDrosophila compound eye contains eight photoreceptor cells, R1–R8. The fates of the photoreceptors are determined exclusively by inductive interactions between neuronal precursors in the cell cluster from which the ommatidium is formed. R7 induction has been extensively analysed at the molecular level. Activation of a membrane receptor tyrosine kinase (Sevenless) in the R7 precursor by a ligand (Bride of sevenless) present on the surface of R8 triggers a transduction cascade mediated by Ras, establishing the R7 fate of this cell. Other Sev-expressing cells are prevented from taking on the R7 fate by several different mechanisms. Pokkuri-mediated repression represents one such regulatory mechanism. The positive and negative signaling pathways operating in the fate determination of other photoreceptor cells are also discussed.  相似文献   

16.
Summary In this study, immunohistochemistry on cryostat sections is used to demonstrate anti-histamine immunoreactivity in the Drosophila brain. The results support earlier findings that histamine is probably a transmitter of insect photoreceptors. It is further shown that, in Drosophila, all imaginal photoreceptors including receptor type R7 are anti-histamine immunoreactive, whereas the larval photoreceptors do not seem to contain histamine. In addition to the photoreceptors, fibres in the antennal nerve and approximately 12 neurons in each brain hemisphere show strong histamine-like immunoreactivity. These cells arborize extensively in large parts of the central brain.  相似文献   

17.
Chen G  Rogers AK  League GP  Nam SC 《PloS one》2011,6(1):e16127

Background

Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes'' role in photoreceptor morphogenesis.

Methodology/Principal Findings

Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn''s gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs).

Conclusions/Significance

These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor.  相似文献   

18.
The TRP channel and phospholipase C-mediated signaling   总被引:2,自引:0,他引:2  
Drosophila photoreceptors use a phospholipase C-mediated signaling for phototransduction. This pathway begins by light activation of a G-protein-coupled photopigment and ends by activation of the TRP and TRPL channels. The Drosophila TRP protein is essential for the high Ca2+ permeability and constitutes the major component of the light-induced current, thereby affecting both excitation and adaptation of the photoreceptor cell. TRP is the prototype of a large and diverse multigene family whose members are sharing a structure, which is conserved through evolution from the worm Caenorhabditis elegans to humans. TRP-related channel proteins are found in a variety of cells and tissues and show a large functional diversity although the gating mechanism of Drosophila TRP and of other TRP-related channels is still unknown.  相似文献   

19.
Summary Antibodies to histamine were used for immunocytochemical studies of the visual system in the flies Calliphora erythrocephala and Musca domestica. Specific immunolabeling of photoreceptors was found both in the compound eyes and ocelli of both species. In the compound eyes histamine-like immunoreactivity (HA-IR) was found in all the short visual fibers (photoreceptors R1–6) and one type of long visual fiber (photoreceptor R8). In addition, the ocellar photoreceptors also show HA-IR. In view of earlier biochemical and pharmacological/physiological findings by Elias and Evans (1983) and Hardie (1987) it thus seems likely that histamine is a neurotransmitter in insect photoreceptors. Interestingly, the second type of long visual fiber (photoreceptor R7) has recently been found to be GABA-immunoreactive (Datum et al. 1986). The two types of long visual fibers may hence use different transmitters which act on different receptors of the postsynaptic neurons in the second visual neuropil, the medulla. In addition to the photoreceptors in the retina and ocelli, we found processes of HA-IR neurons in one of the optic lobe neuropils, the lobula. This finding indicates that histamine may also be a transmitter in certain interneurons in the visual system.Abbreviations HA histamine - GABA -amino butyric acid - GAD glutamic acid decarboxylase - 5-HT 5-hydroxytryptamine (serotonin) - HA-IR histamine-like immunoreactivity - R1-R6 class of short-axoned photoreceptors - R7 and R8 long-axoned photoreceptors - LMC large monopolar neuron of lamina - HSA human serum albumin - PBS phosphate-buffered saline - DEPC diethylpyrocarbonate  相似文献   

20.
 The signal transduction pathway controlling determination of the identity of the R7 photoreceptor in the Drosophila eye is shown to harbor high levels of naturally occurring genetic variation. The number of ectopic R7 cells induced by the dosage-sensitive Sev S11.1 transgene that encodes a mildly activated form of the Sevenless tyrosine kinase receptor is highly sensitive to the wild-type genetic background. Phenotypes range from complete suppression to massive overproduction of photoreceptors that exceeds reported effects of known single gene modifiers, and are to some extent sex-dependent. Signaling from the dominant gain-of-function Drosophila Epidermal Growth Factor Receptor (DER-Ellipse) mutations is also sensitive to the genetic backgrounds, but there is no correlation with the effects on Sev S11.1 . This implies that different genes and/or alleles modify the two activated receptor genotypes. The evolutionary significance of the existence of high levels of genetic variation in the absence of normal phenotypic variation is discussed. Received: 20 September 1997 / Accepted: 10 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号