首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

2.
Previous studies have demonstrated that protease treatment of zona-free mouse eggs impairs sperm-egg interaction (Boldt et al.: Biol Reprod 39:19-27, 1988) and causes modification of a 94 kD egg plasma membrane protein (Boldt et al., Gamete Res 23:91-101, 1989). In this report, the ability of eggs to recover penetration ability following protease treatment was examined. Zona-free mouse eggs were isolated and treated with either trypsin or chymotrypsin (1 mg/ml, 20 min), then cultured for 0, 3, or 6 hr before insemination. Eggs cultured for 3 or 6 hr displayed significantly higher penetration levels than eggs inseminated immediately after protease treatment, indicating a recovery of penetration ability during the 3 or 6 hr incubation period. The recovery of penetration ability was not blocked by inclusion of cyclohexamide (50 micrograms/ml) during the 3 or 6 hr culture period, indicating that protein synthesis was not required for recovery of fusion ability. Cell surface radiolabeling studies with 125I revealed that a 94 kD cell surface protein was lost immediately following trypsin or chymotrypsin treatment but was found on the egg surface after the 3 or 6 hr recovery period. Recovery of the 94 kD egg surface protein occurred in the presence of cyclohexamide, and metabolic radiolabeling studies with 35S-methionine confirmed that synthesis of a 94 kD protein was blocked by cyclohexamide. These results suggest that the recovery of penetration ability after protease treatment of zona-free eggs is due to recovery of the 94 kD cell surface protein, providing further evidence for the involvement of the 94 kD protein in sperm-egg interaction.  相似文献   

3.
Fluorescence photobleaching recovery measurements showed that herpes simplex virus type 1 attachment to target cells rapidly induced an anchorage modulation of cell surface protein mobility, an activity mediated by the cytoskeleton and associated with the multivalent attachment of other ligands (e.g., cells, lectins, or anti-immunoglobulin) to cell surfaces. The restriction in cell surface protein mobility was released concurrently with virus penetration. The effects of attachment and penetration on cell surface protein mobility and cytoskeletal function are some of the earliest cellular changes induced by herpes simplex virus infection.  相似文献   

4.
Penetration of Semliki Forest virus from acidic prelysosomal vacuoles   总被引:37,自引:0,他引:37  
M Marsh  E Bolzau  A Helenius 《Cell》1983,32(3):931-940
To identify and characterize the intracellular site from which the penetration of Semliki Forest virus (SFV) to the cytosolic compartment of the host cell occurs, we determined the time course and temperature dependence of nucleocapsid uncoating and infection in BHK-21 cells. At 37 degrees C the genome release to the cytosol was detected within 5-7 min after virus endocytosis, whereas delivery of the virus particles to secondary lysosomes occurred within 15-20 min. At temperatures of 15 degrees -20 degrees C virus particles were internalized by endocytosis, but they were not delivered to the secondary lysosomes. Nevertheless, at 20 degrees C nucleocapsid uncoating and infection occurred, indicating that secondary lysosomes are not required for SFV penetration. We conclude that the penetration reaction occurs in prelysosomal endocytic vacuoles (endosomes). As SFV penetration by membrane fusion requires a pH less than 6 and the presence of cholesterol in the target membrane, the data indicate that endosomes are acidic and contain cholesterol.  相似文献   

5.
A sulfated polysaccharide, designated HC-b1, was isolated from the brown seaweed Hydroclathrus clathratus. It was found to be a strong inhibitor of herpes simplex virus type 1 (HSV-1), including acyclovir-resistant strain and clinical strain. HC-b1 inhibited the plaque formation of HSV-1 in a dose-dependent manner. It could protect Vero cells from infection by HSV-1 if the cells were incubated with HC-b1 before exposure to the virus. It also had inactivating effect against HSV-1 since the pretreatment of the virus with HC-b1 caused significant reduction of viral infectivity. Time of addition studies demonstrated that HC-b1 exerted its antiviral action at the early stage of virus replication cycle. The presence of HC-b1 could not effectively inhibit the replication of HSV-1 about 45 min after the penetration period started. The antiviral action of HC-b1 appeared to inhibit the attachment of herpes simplex virus on host cell membrane through interfering with the processes of adsorption and penetration.  相似文献   

6.
The major steps in cholera-toxin action, i.e. binding, internalization, generation of A1 peptide and activation of adenylate cyclase, were examined in isolated hepatocytes. The binding of toxin involves a single class of high-affinity sites (KD congruent to 0.1 nM; Bmax. congruent to 10(7) sites/cell). At 37 degrees C, cell-associated toxin is progressively internalized, as judged by the loss of its accessibility to antibodies against whole toxin, A and B subunits (about 50, 75 and 30% of initially bound toxin after 40 min respectively). Two distinct pathways are involved in this process: endocytosis of the whole toxin, and selective penetration of the A subunit into the plasma membrane. Exposure of hepatocytes to an acidic medium (pH 5) results in a rapid and marked disappearance of the A subunit from the cell surface. Generation of A1 peptide and activation of adenylate cyclase by the toxin occur after a lag phase (10 min at 37 degrees C), and increase with time in a parallel manner up to 2-3% A1 peptide generated; they are unaffected by exposure of cells to an acidic medium. Chloroquine and monensin, which elevate the pH in acidic organelles, inhibit by 2-4-fold both the generation of A1 peptide and the activation of adenylate cyclase. Unexpectedly, these drugs also inhibit the internalization of the toxin. These results suggest that an acidic pH facilitates the penetration of A subunit into the plasma membrane and presumably the endosomal membrane as well, and that endocytosis of cholera toxin is required for generation of A1 peptide and activation of adenylate cyclase.  相似文献   

7.
Influenza virus (strain X-47) was labeled with the triplet probe, eosin 5-isothiocyanate. Most of the label was found to be associated with haemagglutinin, the major glycoprotein of the viral envelope. Rotational diffusion of the glycoprotein was investigated by measuring flash-induced transient dichroism of the eosin probe. The anisotropy decay curves showed that mobility of haemagglutinin measured at pH 7.3 increased considerably with temperature with the greatest change occurring over the range 20-30 degrees C. However, at pH 5.2 no mobility was detectable over the time range of the experiment. The activity of the virus was determined by assaying haemolysis of human erythrocytes. The haemolytic activity showed an optimum at pH 5.2 and increased markedly with temperature, being negligible below 20 degrees C. In addition, inactivation of the virus by incubation at pH 5.2 was also strongly temperature dependent. A 15 min incubation at pH 5.2 inactivated the virus above 30 degrees C but had no effect below 20 degrees C. On the basis of these results, it is proposed that mobility of haemagglutinin is significant for its functional properties. When the pH is reduced from 7.3 to 5.2, the mobility observed at higher temperatures is required for the molecular rearrangements which accompany the fusion event. In the absence of an apposing membrane, these rearrangements result in irreversible aggregation of haemagglutinin in the viral membrane, and hence loss of mobility and activity.  相似文献   

8.
The entry of fowl plague virus, and avian influenza A virus, into Madin- Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 degrees C, viruses bound to the cell surface but were not internalized. Binding was not greatly dependent on the pH of the medium and reached an equilibrium level in 60-90 min. Over 90% of the bound viruses were removed by neuraminidase but not by proteases. When cells with prebound virus were warmed to 37 degrees C, part of the virus became resistant to removal b neuraminidase, with a half-time of 10-15 min. After a brief lag period, degraded viral material was released into the medium. The neuraminidase- resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride, a lysosomotropic agent, blocked both the infection and the degradation of viral protein. When the entry process was observed by electron microscopy, viruses were seen bound primarily to microvilli on the cell surface at 0 degrees C and, after warming at 37 degrees C, were endocytosed in coated pits, coated vesicles, and large smooth-surfaced vacuoles. Viruses were also present in smooth-surfaced invaginations and small smooth-surfaced vesicles at both temperatures. At physiological pH, no fusion of the virus with the plasma membrane was observed. When prebound virus was incubated at a pH of 5.5 or below for 1 min at 37 degrees C, fusion was, however, detected by ferritin immunolabeling. t low multiplicity, 90% of the prebound virus became neuraminidase- resistant and was presumably fused after only 30 s at low pH. These experiments suggest that fowl plague virus enters MDCK cells by endocytosis in coated pits and coated vesicles and is transported to the lysosome where the low pH initiates a fusion reaction ultimately resulting in the transfer of the genome into the cytoplasm. The entry pathway of fowl plague virus thus resembles tht earlier described for Semliki Forest virus.  相似文献   

9.
The early events mediating herpes simplex virus type 1 (HSV-1) infection include virion attachment to cell surface heparan sulfates and subsequent penetration. Recent evidence has suggested that the high-affinity fibroblast growth factor (FGF) receptor mediates HSV-1 entry. This report presents three lines of experimental evidence showing that the high-affinity FGF receptor is not required for HSV-1 infection. First, rat L6 myoblasts lacking FGF receptors were as susceptible to HSV-1 infection as L6 cells genetically engineered to express the FGF receptor. Second, a soluble FGF receptor fragment that inhibited FGF binding and receptor activation did not inhibit HSV-1 infection. Finally, basic FGF (but not acidic FGF) inhibited HSV-1 infection in L6 cells lacking FGF receptors, presumably by blocking cell surface heparan sulfates also required for HSV-1 infection. These results show that the high-affinity FGF receptor is not required for HSV-1 infection but instead that specific low-affinity basic FGF binding sites are used for HSV-1 infection.  相似文献   

10.
Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 [VP3]; 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. Cleavage of VP3 does not alter viral binding to cell monolayers. In previous electron microscopic studies of infected cell cultures, it has been demonstrated that rotavirus particles enter cells by both endocytosis and direct cell membrane penetration. To determine whether trypsin treatment affected rotavirus internalization, we studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Endocytosis inhibitors (sodium azide, dinitrophenol) and lysosomotropic agents (ammonium chloride, chloroquine) had a limited effect on the entry of infectious virus into cells. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 medicated 51Cr, [14C]choline, and [3H]inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.  相似文献   

11.
Plasma membrane NADH oxidase is gravi-responsive.   总被引:2,自引:0,他引:2  
  相似文献   

12.
Fusion of influenza virus with human erythrocytes at pH 5.2 was followed by fluorescence microscopy using a cooled slow-scan CCD camera. The high sensitivity of the CCD permits repetitive digital imaging of the same cells with minimal photobleaching. The experimental conditions were such that only a small number of virus particles were adsorbed per cell. Quantitative analysis of the data indicated that for most cells only a single fusion event took place. This was, however, sufficient to cause haemolysis within 30 min at 20–22°C for about 60% of cells. There was a highly variable time lag between fusion and haemolysis. The lateral diffusion coefficient of virus particles on the cell surface when bound at pH 7.4 was < 2 × 10−13 cm2·s−1. The technique should be of value for more detailed studies of the dynamics of viral and other membrane fusion events.  相似文献   

13.
The kinetics of the incorporation of the proteins of vesicular stomatitis virus into the HeLa cell plasma membrane have been studied. The virus M and NS proteins become associated with the plasma membrane very rapidly (< 5 min) while the glycoprotein G shows a lag of about 20 minutes. A similar lag is observed for the incorporation of the G protein into released virus. By pulse-chase experiments the transit time for the G protein from the site of completion to the plasma membrane was also calculated to be about 20 minutes although not all of the G protein could be chased into the plasma membranes.  相似文献   

14.
Earlier studies have shown that herpes simplex viruses adsorb to but do not penetrate permissive baby hamster kidney clonal cell lines designated the BJ series and constitutively expressing the herpes simplex virus 1 (HSV-1) glycoprotein D (gD). To investigate the mechanism of the restriction, the following steps were done. First, wild-type HSV-1 strain F [HSV-1(F)] virus was passaged blindly serially on clonal line BJ-1 and mutant viruses [HSV-1(F)U] capable of penetration were selected. The DNA fragment capable of transferring the capacity to infect BJ cells by marker transfer contains the gD gene. The mutant gD, designated gDU, differed from wild-type gD only in the substitution of Leu-25 by proline. gDU reacted with monoclonal antibodies which neutralize virus and whose epitopes encompass known functional domains involved in virus entry into cells. It did not react with the monoclonal antibody AP7 previously shown to react with an epitope which includes Leu-25. Second, cell lines expressing gDU constitutively were constructed and cloned. Unlike the clonal cell lines constitutively expressing gD (e.g., the BJ cell line), those expressing gDU were infectable by both HSV-1(F) and HSV-1(F)U. Lastly, exposure of BJ cells to monoclonal antibody AP7 rendered the cells capable of being infected with HSV-1(F). The results indicate that (i) gD expresses a specific function, determined by sequences at or around Leu-25, which blocks entry of virus into cells synthesizing gD, (ii) the gD which blocks penetration by superinfecting virus is located in the plasma membrane, (iii) the target of the restriction to penetration is the identical domain of the gD molecule contained in the envelope of the superinfecting virus, and (iv) the molecular basis of the restriction does not involve competition for a host protein involved in entry, as was previously thought.  相似文献   

15.
We examined the entry process of herpes simplex virus type 1 (HSV-1) by using infectious virus and previously characterized noninfectious viruses that can bind to cells but cannot penetrate as a result of inactivation of essential viral glycoprotein D (gD) or H (gH). After contact of infectious virus with the cell plasma membrane, discernible changes of the envelope and tegument could be seen by electron microscopy. Noninfectious virions were arrested at distinct steps in interactions with cells. Viruses inactivated by anti-gD neutralizing antibodies attached to cells but were arrested prior to initiation of a visible fusion bridge between the virus and cell. As judged from its increased sensitivity to elution, virus lacking gD was less stably bound to cells than was virus containing gD. Moreover, soluble gD could substantially reduce virus attachment when added to cells prior to or with the addition of virus. Virus inactivated by anti-gH neutralizing antibodies attached and could form a fusion bridge but did not show expansion of the fusion bridge or extensive rearrangement of the envelope and tegument. We propose a model for infectious entry of HSV-1 by a series of interactions between the virion envelope and the cell plasma membrane that trigger virion disassembly, membrane fusion, and capsid penetration. In this entry process, gD mediates a stable attachment that is likely required for penetration, and gH seems to participate in fusion initiation or expansion.  相似文献   

16.
The relationship between polyene antibiotic binding to red cells and their membrane permeabilization was studied using two 14C-labelled amphotericin B (AmB) derivatives: N-fructosyl AmB and N-acetyl methyl ester AmB. The binding kinetics of both derivatives were determined on whole red cells and ghosts. The resulting experimental points were well fitted by monoexponential functions, and the characteristic t1/2 for both derivatives were calculated from these functions. At 2 X 10(-5) M, the half time t1/2 for N-acetyl methyl ester AmB (30.2 min) which forms aqueous aggregates was longer than the t1/2 for the more soluble species N-fructosyl AmB (4.5 min). At lower concentrations (10(-7) M), the t1/2 for N-acetyl methyl ester AmB (6.3 min) in a more solubilized form was close to that of N-fructosyl AmB (7.9 min). These results suggest that only solubilized species bound to red cell membranes and that disaggregation of aggregates is the limiting step in the binding process. The permeabilization of red cell membranes by N-fructosyl AmB, measured as intracellular K+ leak, was not instantaneous and at 10 degrees C external K+ was only detected 20 min after antibiotic addition. In contrast, binding occurs without lag time. Consequently, different mecanisms underlie binding and K+ permeability inducement. Absorption spectroscopy data showed that bound antibiotic is located in the hydrophobic membrane interior and that this penetration of the membrane by AmB derivatives occurs without lag time. Consequently, the lag time occurring for K+ permeability inducement would be due to some steps subsequent to binding and probably located in the hydrophobic membrane interior. This statement is further supported by the observation that the lag time is sensitive to changes in membrane fluidity as shown here by the break between 20 and 30 degrees C in the slope of the Arrhenius plot for the lag time, coinciding with the phase transition in red cell membranes.  相似文献   

17.
The concentration of antigen required to stimulate influenza virus-specific helper T cells was observed to be dependent upon the antigenic form bearing the relevant determinant: intact, nonreplicative virus was needed only in picomolar amounts, while denatured proteins, protein fragments, or synthetic peptides were required in micromolar concentrations for a threshold level of stimulation. Antigenic efficiency of intact virus was found to result from the attachment of virus to sialic acid residues on the surface of the antigen-presenting cell since spikeless viral particles lacking the hemagglutinin molecule were much less efficient antigens for helper T cells and continuous presence of hemagglutination-inhibiting antihemagglutinin antibodies reduced efficiency of stimulation by intact virus approximately 100-fold for both hemagglutinin and internal virion proteins. Influenza virus associated rapidly with antigen-presenting cells; less than 10 min at 20 degrees C was sufficient to introduce virus for a maximal level of T-cell stimulation. This rapid attachment was blocked by antibodies to the hemagglutinin or by pretreatment of the antigen-presenting cells with neuraminidase to remove the cellular virus receptor. Following viral adsorption by antigen-presenting cells, a lag period of 30 min at 37 degrees C was required for the expression of helper T-cell determinants. One early event identified was the movement of the virus to a neuraminidase-insensitive compartment, which can occur at 10 degrees C, but which was not equivalent to expression of helper T-cell determinants. Preincubation of cells with virus at 10 degrees C for 4 h reduced the lag period of helper T-cell determinant expression to 15 min when these cells were shifted to 37 degrees C, suggesting that transition of the virus to a neuraminidase-resistant state is a required step in presentation of T-cell antigenic determinants.  相似文献   

18.
A fibroblast mutant cell line lacking the Na+/H+ antiporter was used to study the influence of low cytoplasmic pH on membrane transport in the endocytic and exocytic pathways. After being loaded with protons, the mutant cells were acidified at pH 6.2 to 6.8 for 20 min while the parent cells regulated their pH within 1 min. Cytoplasmic acidification did not affect the level of intracellular ATP or the number of clathrin-coated pits at the cell surface. However, cytosolic acidification below pH 6.8 blocked the uptake of two fluid phase markers, Lucifer Yellow and horseradish peroxidase, as well as the internalization and the recycling of transferrin. When the cytoplasmic pH was reversed to physiological values, both fluid phase endocytosis and receptor-mediated endocytosis resumed with identical kinetics. Low cytoplasmic pH also inhibited the rate of intracellular transport from the Golgi complex to the plasma membrane. This was shown in cells infected by the temperature-sensitive mutant ts 045 of the vesicular stomatitis virus (VSV) using as a marker of transport the mutated viral membrane glycoprotein (VSV-G protein). The VSV-G protein was accumulated in the trans-Golgi network (TGN) by an incubation at 19.5 degrees C and was transported to the cell surface upon shifting the temperature to 31 degrees C. This transport was arrested in acidified cells maintained at low cytosolic pH and resumed during the recovery phase of the cytosolic pH. Electron microscopy performed on epon and cryo-sections of mutant cells acidified below pH 6.8 showed that the VSV-G protein was present in the TGN. These results indicate that acidification of the cytosol to a pH less than 6.8 inhibits reversibly membrane transport in both endocytic and exocytic pathways. In all likelihood, the clathrin and nonclathrin coated vesicles that are involved in endo- and exocytosis cannot pinch off from the cell surface or from the TGN below this critical value of internal pH.  相似文献   

19.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

20.
Cell electrophoretic mobility of rat erythrocyte decreased with time after 3000 R X-irradiation without spontaneous recovery. On addition of 10?4M ATP to the irradiated cells, recovery was observed within 10 minutes. Washing out of ATP and subsequent incubation for 1 hr resulted in the return of mobility to the low level. Preincubation with 0.1 μg/ml colchicine for 15 minutes or 1 μg/ml cytochalasin B for 30 min completely blocked the reversible effect of ATP on electrophoretic mobility. These results suggest the existence of tubulin-like polymerizing protein in the cytoplasmic membrane and changes in its conformation induced both by X-irradiation and by added ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号