首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
St John JC  Schatten G 《Genetics》2004,167(2):897-905
Offspring produced by nuclear transfer (NT) have identical nuclear DNA (nDNA). However, mitochondrial DNA (mtDNA) inheritance could vary considerably. In sheep, homoplasmy is maintained since mtDNA is transmitted from the oocyte (recipient) only. In contrast, cattle are heteroplasmic, harboring a predominance of recipient mtDNA along with varying levels of donor mtDNA. We show that the two nonhuman primate Macaca mulatta offspring born by NT have mtDNA from three sources: (1) maternal mtDNA from the recipient egg, (2) maternal mtDNA from the egg contributing to the donor blastomere, and (3) paternal mtDNA from the sperm that fertilized the egg from which the donor blastomere was isolated. The introduction of foreign mtDNA into reconstructed recipient eggs has also been demonstrated in mice through pronuclear injection and in humans through cytoplasmic transfer. The mitochondrial triplasmy following M. mulatta NT reported here forces concerns regarding the parental origins of mtDNA in clinically reconstructed eggs. In addition, mtDNA heteroplasmy might result in the embryonic stem cell lines generated for experimental and therapeutic purposes ("therapeutic cloning").  相似文献   

2.
Gross alterations in cell energy metabolism underlie manifestations of hereditary OXPHOS (oxidative phosphorylation) diseases, many of which depend on proportion of mutant mitochondrial DNA (mtDNA) in tissues. An animal model of OXPHOS disease with maternal inheritance of mitochondrial heteroplasmy might help understanding the peculiarities of abnormal mtDNA distribution and its effect on pre- and postnatal development. Previously we obtained mice that carry human mtDNA in some tissues. It co-existed with murine mtDNA (heteroplasmy) and was transmitted maternally to the progeny of animals developed from zygotes injected with human mitochondria. To analyze the probability of obtaining heteroplasmic mice we increased the number of experiments with early embryos and obtained more specimens from F1. About 33% of zygotes injected with human mtDNA developed into post-implantation embryos (7th-13th days). Lower amount of such developed into neonate mice (ca. 21%). Among post-implantation embryos and in generations F0 and F1 percentages of human mtDNA-carriers were ca. 14-16%. Such percentages are sufficient for modeling maternally inherited heteroplasmy in small animal groups. More data are needed to understand the regularities of anomalous mtDNA distribution among cells and tissues and whether heart and muscles frequently carrying human mtDNA in our experiments are particularly susceptible to heteroplasmy.  相似文献   

3.
Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.  相似文献   

4.
Mitochondrial genotypes have been shown to segregate both rapidly and slowly when transmitted to consecutive generations in mammals. Our objective was to develop an animal model to analyze the patterns of mammalian mitochondrial DNA (mtDNA) segregation and transmission in an intraspecific heteroplasmic maternal lineage to investigate the mechanisms controlling these phenomena. Heteroplasmic progeny were obtained from reconstructed blastocysts derived by transplantation of pronuclear-stage karyoplasts to enucleated zygotes with different mtDNA. Although the reconstructed zygotes contained on average 19% mtDNA of karyoplast origin, most progeny contained fewer mtDNA of karyoplast origin and produced exclusively homoplasmic first generation progeny. However, one founder heteroplasmic adult female had elevated tissue heteroplasmy levels, varying from 6% (lung) to 69% (heart), indicating that stringent replicative segregation had occurred during mitotic divisions. First generation progeny from the above female were all heteroplasmic, indicating that, despite a meiotic segregation, they were derived from heteroplasmic founder oocytes. Some second and third generation progeny contained exclusively New Zealand Black/BINJ mtDNA, suggesting, but not confirming, an origin from an homoplasmic oocyte. Moreover, several third to fifth generation individuals maintained mtDNA from both mouse strains, indicating a slow or persistent segregation pattern characterized by diminished tissue and litter variability beyond second generation progeny. Therefore, although some initial lineages appear to segregate rapidly to homoplasmy, within two generations other lineages transmit stable amounts of both mtDNA molecules, supporting a mechanism where mitochondria of different origin may fuse, leading to persistent intraorganellar heteroplasmy.  相似文献   

5.
The mitochondrial genotype of heteroplasmic human cell lines containing the pathological np 3243 mtDNA mutation, plus or minus its suppressor at np 12300, has been followed over long periods in culture. Cell lines containing various different proportions of mutant mtDNA remained generally at a consistent, average heteroplasmy value over at least 30 wk of culture in nonselective media and exhibited minimal mitotic segregation, with a segregation number comparable with mtDNA copy number (>/=1000). Growth in selective medium of cells at 99% np 3243 mutant mtDNA did, however, allow the isolation of clones with lower levels of the mutation, against a background of massive cell death. As a rare event, cell lines exhibited a sudden and dramatic diversification of heteroplasmy levels, accompanied by a shift in the average heteroplasmy level over a short period (<8 wk), indicating selection. One such episode was associated with a gain of chromosome 9. Analysis of respiratory phenotype and mitochondrial genotype of cell clones from such cultures revealed that stable heteroplasmy values were generally reestablished within a few weeks, in a reproducible but clone-specific fashion. This occurred independently of any straightforward phenotypic selection at the individual cell-clone level. Our findings are consistent with several alternate views of mtDNA organization in mammalian cells. One model that is supported by our data is that mtDNA is found in nucleoids containing many copies of the genome, which can themselves be heteroplasmic, and which are faithfully replicated. We interpret diversification and shifts of heteroplasmy level as resulting from a reorganization of such nucleoids, under nuclear genetic control. Abrupt remodeling of nucleoids in vivo would have major implications for understanding the developmental consequences of heteroplasmy, including mitochondrial disease phenotype and progression.  相似文献   

6.
Whether regular exercise is beneficial or should be avoided is a question currently unsettled in patients with heteroplasmic mitochondrial DNA (mtDNA) disorders of skeletal muscle. Deleterious effects of habitual physical inactivity superimposed upon impaired mitochondrial oxidative phosphorylation may contribute to varying degrees of exercise intolerance in these patients. Endurance exercise training is widely known to improve exercise capacity in healthy subjects and various chronic-disease patient populations. Although we have shown that beneficial physiological and biochemical responses to training increase exercise tolerance in patients with mtDNA defects, knowledge of the muscle adaptive response to endurance training within the setting of mitochondrial heteroplasmy remains limited. In order to determine advisability of endurance training as therapy, it remains to be established whether potential endurance training-induced increases in mutant mtDNA levels may be offset by increases in absolute wild-type mtDNA levels, and whether chronic inactivity leads to a selective down-regulation of wild-type mtDNA. Resistance training utilizes a different adaptive exercise approach to induce the transfer of normal mitochondrial templates from satellite cells to mature muscle fibers of patients with sporadic mtDNA disorders. The efficacy and safety of this approach needs to be further established. Our current inability to clearly advise patients to "use it or lose it" underscores the immediate urgency of studying the effects of exercise on skeletal muscle of patients with heteroplasmic mtDNA defects.  相似文献   

7.
Mutations in mitochondrial DNA (mtDNA) may result in various pathological processes. Detection of mutant mtDNAs is a problem for diagnostic practice that is complicated by heteroplasmy – a phenomenon of the inferring presence of at least two allelic variants of the mitochondrial genome. Also, the level of heteroplasmy largely determines the profile and severity of clinical manifestations. Here we discuss detection of mutations in heteroplasmic mtDNA using up-todate methods that have not yet been introduced as routine clinical assays. These methods can be used for detecting mutations in mtDNA to verify diagnosis of “mitochondrial disease”, studying dynamics of mutant mtDNA in body tissues of patients, as well as investigating structural features of mtDNAs. Original data on allele-specific discrimination of m.11778G>A mutation by droplet digital PCR are presented, which demonstrate an opportunity for simultaneous detection and quantitative assessment of mutations in mtDNAs.  相似文献   

8.
In nuclear transfer procedures, in addition to nuclei, donor cell mitochondria are routinely transferred into recipient oocytes, and mitochondrial heteroplasmy has been reported. However, various protocols have resulted in either homoplasmy for recipient oocyte mitochondria or varying heteroplasmic levels in cloned animals. In nuclear transfer protocols, donor cells are subjected to serum-starvation prior to electroporation. Therefore, the relationship between culture conditions and mitochondrial activity was explored. Fibroblast cell lines were propagated from bovine ear epithelium, skin, skeletal muscle, or cumulus cells. In vitro mitochondrial viability was assessed in proliferative and confluent cells, cultured under serum-starvation or supplemented conditions. Cells were stained with MitoTracker Red CMXRos and comparative fluorescence intensities were assessed. The mitochondrial activity per cell was highest under proliferation, significantly lower at confluency (p < 0.001), and remained depressed after serum starvation for within a week (p < 0.001). Serum starvation induced an increase in mitochondrial viability in confluent cells. These results demonstrate that mitochondrial viability is dramatically affected by cell culture conditions. Consequently, specific cell culture parameters provide one explanation for the varying incidence of heteroplasmy identified in cloned animals. Future research should reveal whether specific cell culture parameters represent one of the factors for the varying incidence of heteroplasmy identified in cloned animals.  相似文献   

9.

Background  

The mitochondrial DNA (mtDNA) of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT) was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts.  相似文献   

10.
Sturgeons are fish species with a complex biology. They are also characterized by complex aspects including polyploidization and easiness of hybridization. As with most of the Ponto-Caspian sturgeons, the populations of Acipenser ruthenus from the Danube have declined drastically during the last decades. This is the first report on mitochondrial point heteroplasmy in the cytochrome b gene of this species. The 1141 bp sequence of the cytb gene in wild sterlet sturgeon individuals from the Lower Danube was determined, and site heteroplasmy evidenced in three of the 30 specimens collected. Two nucleotide sequences were identified in these heteroplasmic individuals. The majority of the heteroplasmic sites are synonymous and do not modify the sequence of amino acids in cytochrome B protein. To date, several cases of point heteroplasmy have been reported in animals, mostly due to paternal leakage of mtDNA. The presence of specific point heteroplasmic sites might be interesting for a possible correlation with genetically distinct groups in the Danube River.  相似文献   

11.
To assess the extent of cytoplasmic genetic variability in cloned cattle produced by nuclear transplantation procedures, we investigated 29 individuals of seven male cattle clones (sizes 2–6) from two different commercial sources. Restriction enzyme and direct sequence analysis of mitochondrial DNA (mtDNA) detected a total of 12 different haplotypes. Transmitochondrial individuals (i.e., animals which share identical nuclei but have different mitochondrial DNA) were detected in all but one of the clones, demonstrating that mtDNA variation among cloned cattle is a very common phenomenon which prevents true genetic identity. The analyses also showed that the cytoplasmic genetic status of some investigated individuals and clones is further complicated by heteroplasmy (more than one mtDNA type in an individual). The relative proportions of different mtDNA‐types in two animals with mild heteroplasmy were estimated at 2:98% and 4:96% in DNA samples derived from blood. This is in agreement with values expected from karyoplast‐cytoplast volume ratios. In contrast, the mtDNA haplotype proportions observed in six other heteroplasmic animals of two different clones ranged from 21:79% to 57:43%, reflecting a marked increase in donor blastomere mtDNA contributions. These results suggest that mtDNA type of donor embryos and recipient oocytes used in nuclear transfer cattle cloning should be controlled to obtain true clones with identical nuclear and cytoplasmic genomes. Mol. Reprod. Dev. 54:24–31, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
For identification of somatic mitochondrial DNA (mtDNA) mutations, the mtDNA major noncoding region (D-loop) sequence in blood samples and carotid atherosclerosis plaques from patients with atherosclerosis was analyzed. Five point heteroplasmic positions were observed in 4 of 23 individuals (17%). Only in two cases could heteroplasmy have resulted from somatic mutation, whereas three heteroplasmic positions were found in both vascular tissue and blood. In addition, length heteroplasmy in a polycytosine stretches was registered at nucleotide positions 303–315 in 16 individuals, and also in the 16184–16193 region in four patients. The results suggest that somatic mtDNA mutations can occur during atherosclerosis, but some heteroplasmic mutations may appear in all tissues, possibly being inherited.  相似文献   

13.
刘艳  胡婧  黄原 《动物学杂志》2006,41(5):120-126
线粒体DNA的异质性在生物学、医学、法医、生物技术等领域有重要的应用。本文从自然发生(包括体细胞突变、父系渗入和杂交)和人工产生(包括转基因、细胞融合、核移植和转线粒体)两大方面系统地介绍了线粒体DNA异质性的产生机制及其遗传。并介绍了线粒体DNA异质性的检测方法,已知突变位点mtDNA异质性的检测方法有原位PCR技术、PCR-RFLP和实时荧光定量PCR技术,未知突变位点mtDNA异质性的检测方法有长PCR技术、时相温度梯度凝胶电泳(TTGE)和变性高效液相色谱(DHPLC)等。最后对克隆生物中线粒体异质性检测的应用实例作了介绍。  相似文献   

14.
15.
In the process of nuclear transfer, heteroplasmic sources of mitochondrial DNA from a donor cell and a recipient oocyte are mixed in the cytoplasm of the reconstituted embryo. The distribution of mitochondrial DNA heteroplasmy in nuclear transfer bovine embryos and resultant offspring was investigated by measuring polymorphism in the displacement loop region of mitochondrial DNA using PCR-mediated single-strand conformation polymorphism. Most offspring (20 of 21 calves) from recipient oocytes of undefined mitochondrial DNA genotypes showed different genotypes from the mitochondrial DNA of donor cells. The single calf that was an exception showed heteroplasmy, including the donor mitochondrial DNA genotype. Six cloned calves were produced from oocytes of a defined mitochondrial DNA genotype. All of these clonal members and various tissues showed only the mitochondrial DNA genotype derived from the oocyte. The mitochondrial DNA from donor cells appeared to be eliminated during early embryonic development; it gradually decreased at the early cleavage stages and was hardly detectable by the blastocyst stage. These results indicate that the genotype of mitochondrial DNA from recipient oocytes may become the dominant category of mitochondrial DNA in calves resulting from nuclear transfer.  相似文献   

16.
In embryos derived by nuclear-transfer (NT), fusion of donor cell and recipient oocyte caused mitochondrial heteroplasmy. Previous studies from other laboratories have reported either elimination or maintenance of donor-derived mitochondrial DNA (mtDNA) from somatic cells in cloned animals. Here we examined the distribution of donor mtDNA in NT embryos and calves derived from somatic cells. Donor mitochondria were clearly observed by fluorescence labeling in the cytoplasm of NT embryos immediately after fusion; however, fluorescence diminished to undetectable levels at 24 hr after nuclear transfer. By PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, donor mtDNAs were not detected in the NT embryos immediately after fusion (less than 3-4%). In contrast, three of nine NT calves exhibited heteroplasmy with donor cell mtDNA populations ranging from 6 to 40%. These results provide the first evidence of a significant replicative advantage of donor mtDNAs to recipient mtDNAs during the course of embryogenesis in NT calves from somatic cells.  相似文献   

17.
Determination of mitochondrial DNA (mtDNA) heteroplasmy for the diagnosis of patients with mitochondrial disorders is a difficult task due to the coexistence of wild-type and mutant genomes. We have developed a new method for genotyping and quantification of heteroplasmic point mutations in mtDNA based on the SNaPshot technology. We compared the data of this method with the widely used "last hot-cycle" PCR-RFLP method by studying 15 patients carrying mtDNA mutations. We showed that SNaPshot is an accurate, reproducible, and sensitive technique for the determination of heteroplasmic mtDNA mutations in different tissues from patients, and it is a promising system to be used in prenatal and postnatal diagnosis of mtDNA-associated disorders.  相似文献   

18.
Mitochondria play a central role to provide ATP for fertilization and preimplantation embryo development in the ooplasm. The mitochondrial dysfunction of oocyte has been proposed as one of the causes of high levels of developmental retardation and arrest that occur in preimplantation embryos generated using Assisted Reproductive Technology. Cytoplasmic transfer (CT) from a donor to a recipient oocyte has been applied to infertility due to dysfunctional ooplasm, with resulting pregnancies and births. However, neither the efficacy nor safety of this procedure has been appropriately investigated. In order to improve embryogenesis, we observed the mitochondrial distribution in ooplasma under the several conditions using mitochondrial GFP-transgenic mice (mtGFP-tg mice) in which the mitochondria are visualized by GFP. In this report, we will present our research about the mitochondrial distribution in ooplasm during early embryogenesis and the fate of injected donor mitochondria after CT using mtGFP-tg mice. The mitochondria in ooplasm from the germinal vesicle stage to the morula stage were accumulated in the perinuclear region. The mitochondria of the mtGFP-tg mouse oocyte transferred into the wild type mouse embryo could be observed until the blastocysts stage, suggesting that the mtGFP-tg mice oocyte is very useful for visual observation of the mitochondrial distribution in the oocyte, and that the aberrant early developmental competences due to the oocyte mitochondrial dysfunction may be overcome by transferring the "normal" mitochondria.  相似文献   

19.
Studies in vitro have shown that a respiratorydeficient phenotype is expressed by cells when the proportion of mtDNA with a disease-associated mutation exceeds a threshold level, but analysis of tissues from patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) have failed to show a consistent relationship between the degree of heteroplasmy and biochemical expression of the defect. One possible explanation for this phenomenon is that there is variation of heteroplasmy between individual cells that is not adequately reflected by the mean heteroplasmy for a tissue. We have confirmed this by study of fibroblast clones from subjects heteroplasmic for the MELAS 3243 (A G) mtDNA mutation. Similar observations were made with fibroblast clones derived from two subjects heteroplasmic for the 11778 (GA) mtDNA mutation of Leber's hereditary optic neuropathy. For the MELAS 3243 mutation, the distribution of mutant mtDNA between different cells was not randomly distributed about the mean, suggesting that selection against cells with high proportions of mutant mtDNA had occurred. To explore the way in which heteroplasmic mtDNA segregates in mitosis we followed the distribution of heteroplasmy between clones over approximately 15 generations. There was either no change or a decrease in the variance of intercellular heteroplasmy for the MELAS 3243 mutation, which is most consistent with segregation of heteroplasmic units of multiple mtDNA molecules in mitosis. After mitochondria from one of the MELAS 3243 fibroblast cultures were transferred to a mitochondrial DNA-free (0) cell line derived from osteosarcoma cells by cytoplast fusion, the mean level and intercellular distribution of heteroplasmy was unchanged. We interpret this as evidence that somatic segregation (rather than nuclear background or cell differentiation state) is the primary determinant of the level of heteroplasmy.  相似文献   

20.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号