首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. An F-insensitive 3′-nucleotidase was purified from spinach leaf tissue; the enzyme hydrolysed 3′-AMP, 3′-CMP and adenosine 3′-phosphate 5′-sulphatophosphate but not adenosine 5′-nucleotides nor PPi. The pH optimum of the enzyme was 7.5; Km (3′-AMP) was approx. 0.8mm and Km (3′-CMP) was approx. 3.3mm. 3′-Nucleotidase activity was not associated with chloroplasts. Purified Mg2+-dependent pyrophosphatase, free from F-insensitive 3′-nucleotidase, catalysed some hydrolysis of 3′-AMP; this activity was F-sensitive. 2. Adenosine 5′-sulphatophosphate kinase activity was demonstrated in crude spinach extracts supplied with 3′-AMP by the synthesis of the sulphate ester of 2-naphthol in the presence of purified phenol sulphotransferase; purified ATP sulphurylase and pyrophosphatase were also added to synthesize adenosine 5′-sulphatophosphate. Adenosine 5′-sulphatophosphate kinase activity was associated with chloroplasts and was released by sonication. 3. Isolated chloroplasts synthesized adenosine 3′-phosphate 5′-sulphatophosphate from sulphate and ATP in the presence of a 3′-nucleotide; the formation of adenosine 5′-sulphatophosphate was negligible. In the absence of a 3′-nucleotide the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate was negligible, but the formation of adenosine 5′-sulphatophosphate was readily detected. Some properties of the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate by isolated chloroplasts are described. 4. Adenosine 3′-phosphate 5′-sulphatophosphate, synthesized by isolated chloroplasts, was characterized by specific enzyme methods, electrophoresis and i.r. spectrophotometry. 5. Isolated chloroplasts catalysed the incorporation of sulphur from sulphate into cystine/cysteine; the incorporation was enhanced by 3′-AMP and l-serine. It was concluded that adenosine 3′-phosphate 5′-sulphatophosphate is an intermediate in the incorporation of sulphur from sulphate into cystine/cysteine.  相似文献   

2.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

3.
Plants cultivated with Cd can produce large amounts of phytochelatins. Since these compounds contain much cysteine, these plants should have an increased rate of assimilatory sulfate reduction, the biosynthetic pathway leading to cysteine. To test this prediction, the effect of Cd on growth, sulfate assimilation in vivo and extractable activity of two enzymes of sulfate reduction, ATP-sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase were measured in maize (Zea mays L.) seedlings. For comparison, nitrate reductase activity was determined. In 9-day-old cultures, the increase in fresh and dry weight was significantly inhibited by 50 micromolar and more Cd in the roots and by 100 and 200 micromolar in the shoots. Seedlings cultivated with 50 micromolar Cd for 5 days incorporated more label from 35SO42− into higher molecular weight compounds than did controls, indicating that the predicted increase in the rate of assimilatory sulfate reduction took place. Consistent with this finding, an increased level of the extractable activity of both ATP-sulfurylase and adenosine 5′-phosphosulfate sulfotransferase was measured in the roots of these plants at 50 micromolar Cd and at higher concentrations. This effect was reversible after removal of Cd from the nutrient solution. In the leaves, a significant positive effect of Cd was detected at 5 micromolar for ATP-sulfurylase and at 5 and 20 micromolar for adenosine 5′-phosphosulfate sulfotransferase. At higher Cd concentrations, both enzyme activities were at levels below the control. Nitrate reductase (EC 1.6.6.1) activity decreased at 50 micromolar or more Cd in the roots and was similarly affected as ATP-sulfurylase activity in the primary leaves.  相似文献   

4.
The effect of various alkylguanidines on ion absorption and energy metabolism in oat (Avena sativa cv. Goodfield) roots has been investigated. Of several alkylguanidines tested, octylguanidine was the most effective inhibitor of both K+ and Cl absorption by excised roots. At 225 μm octylguanidine, the transport of both ions was inhibited within 60 seconds and to a similar extent. Octylguanidine inhibited mitochondrial oxidative phosphorylation and mitochondrial adenosine 5′-triphosphatase (ATPase). The plasma membrane ATPase was also inhibited if the membranes were diluted and pretreated with Triton X-100.  相似文献   

5.
A uracil phosphoribosyltransferase (UMP-pyrophosphorylase) was found in several angiosperms and was partially purified from epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings. Its pH optimum was about 8.5; its required approximately 0.3 mm MgCl2 for maximum activity but was inhibited by MnCl2; its molecular weight determined by chromatography on Sephadex G-150 columns was approximately 100,000; its Km values for uracil and 5-phosphorylribose 1-pyrophosphate were 0.7 μm and 11 μm; and it was partially resolved from a similar phosphoribosyltransferase converting orotic acid to orotodine 5′-phosphate. Enzyme fractions containing both uracil phosphoribosyl transferase and orotate phosphoribosyltransferase converted 6-azauracil and 5-fluorouracil to products with chromatographic properties of 6-azauradine 5′-phosphate and 5-fluorouridine 5′-phosphate. Uracil phosphoribosyltransferase probably functions in salvage of uracil for synthesis of pyrimidine nucleotides.  相似文献   

6.
Ramus J 《Plant physiology》1974,54(6):945-949
Active transport of exogenous sulfate into log phase cells of Porphyridium aerueineum followed Michaelis-Menten kinetics, and the apparent Km for sulfate transport is approximately 2.5 × 10−6m. Molybdate, also a group VI anion, is a competitive inhibitor of sulfate transport, and the inhibition is freely reversible. Once in the cell, molybdate depresses the rate of sulfate pool utilization by blocking sulfate transfer to polysaccharides destined for secretion to the cell surface. Specifically, molybdate inhibits the formation of adenosine 5′-phosphosulfate and in turn the formation of adenosine 3′-phosphate 5′-phosphosulfate, the activated donor for sulfate transfer reactions. Combined with the previous identification of adenosine 3′-phosphate 5′-phosphosulfate, this is taken as evidence that the adenosine 5′-phosphosulfate/adenosine 3′-phosphate 5′-phosphosulfate enzymatic sequence for sulfate activation and sulfate donor reactions is operating in Porphyridium. Thiosulfate is utilized as effectively as sulfate as both a sulfur source for growth and polysaccharide synthesis.  相似文献   

7.
Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction.  相似文献   

8.
Farago S  Brunold C 《Plant physiology》1990,94(4):1808-1812
Effects of the herbicide safeners N,N-diallyl-2,2-dichloroacetamide and 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzooxazin (CGA 154281) on the contents in cysteine and glutathione, on the assimilation of 35SO42−, and on the enzymes of assimilatory sulfate reduction were analyzed in roots and primary leaves of maize (Zea mays) seedlings. Both safeners induced an increase in cysteine and glutathione. In labeling experiments using 35SO42−, roots of plants cultivated in the presence of safeners contained an increased level of radioactivity in glutathione and cysteine as compared with controls. A significant increase in uptake of sulfate was only detected in the presence of CGA 154281. One millimolar N,N-diallyl-2,2-dichloroacetamide applied to the roots for 6 days increased the activity of adenosine 5′-phosphosulfate sulfotransferase about 20- and threefold in the roots and leaves, respectively, compared with controls. CGA 154281 at 10 micromolar caused a sevenfold increase of this enzyme activity in the roots, but did not affect it significantly in the leaves. A significant increase in ATP-sulfurylase (EC 2.7.7.4) activity was only detected in the roots cultivated in the presence of 10 micromolar CGA 154281. Both safeners had no effect on the activity of sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8). The herbicide metolachlor alone or combined with the safeners induced levels of adenosine 5′-phosphosulfate sulfotransferase, which were higher than those of the appropriate controls. Taken together these results show that the herbicide safeners increased both the level of adenosine 5′-phosphosulfate sulfotransferase activity and of the thiols cysteine and glutathione. This indicates that these safeners may be involved in eliminating the previously proposed regulatory mechanism, in which increased concentrations of thiols regulate assimilatory sulfate reduction by decreasing the activities of the enzymes involved.  相似文献   

9.
Bowden L  Lord JM 《Plant physiology》1978,61(2):259-265
Sucrose density gradient centrifugation was employed to separate microsomes, mitochondria, and glyoxysomes from homogenates prepared from castor bean (Ricinus communis) endosperm. In the case of tissue removed from young seedlings, a significant proportion of the characteristic glyoxysomal enzyme malate synthase was recovered in the microsomal fraction. Malate synthase was purified from both isolated microsomes and glyoxysomes by a procedure involving osmotic shock, KCI solubilization, and sucrose density gradient centrifugation. All physical and catalytic properties examined were identical for the enzyme isolated from both organelle fractions. These properties include a molecular weight of 575,000, with a single subunit type of molecular weight 64,000, a pH optimum of 8, apparent Km for acetyl-CoA of 10 μm and glyoxylate of 2 mm. Microsomal and glyoxysomal malate synthases showed identical responses to various inhibitors. Adenine nucleotides were competitive inhibitors with respect to acetyl-CoA, and oxalate (Ki 110 μm) and glycolate (Ki 150 μm) were competitive inhibitors with respect to glyoxylate. Antiserum raised in rabbits against purified glyoxysomal malate synthase was used to confirm serological identity between the microsomal and glyoxysomal enzymes, and was capable of specifically precipitating 35S-labeled malate synthase from KCI extracts of both microsomes and glyoxysomes isolated from [35S]methionine-labeled endosperm tissue.  相似文献   

10.
1. The catabolism of purine nucleotides was investigated by both chemical and radiochemical methods in isolated rat hepatocytes, previously incubated with [14C]adenine. The production of allantoin reached 32±5nmol/min per g of cells (mean±s.e.m.) and as much as 30% of the radioactivity incorporated in the adenine nucleotides was lost after 1h. This rate of degradation is severalfold in excess over values previously reported to occur in the liver in vivo. An explanation for this enhancement of catabolism may be the decrease in the concentration of GTP. 2. In a high-speed supernatant of rat liver, adenosine deaminase was maximally inhibited by 0.1μm-coformycin. The activity of AMP deaminase, measured in the presence of its stimulator ATP in the same preparation, as well as the activity of the partially purified enzyme, measured after addition of its physiological inhibitors GTP and Pi, required 50μm-coformycin for maximal inhibition. 3. The production of allantoin by isolated hepatocytes was not influenced by the addition of 0.1μm-coformycin, but was decreased by concentrations of coformycin that were inhibitory for AMP deaminase. With 50μm-coformycin the production of allantoin was decreased by 85% and the formation of radioactive allantoin from [14C]adenine nucleotides was completely suppressed. 4. In the presence of 0.1μm-coformycin or in its absence, the addition of fructose (1mg/ml) to the incubation medium caused a rapid degradation of ATP, without equivalent increase in ADP and AMP, followed by transient increases in IMP and in the rate of production of allantoin; adenosine was not detectable. In the presence of 50μm-coformycin, the fructose-induced breakdown of ATP was not modified, but the depletion of the adenine nucleotide pool proceeded much more slowly and the rate of production of allantoin increased only slightly. No rise in IMP concentration could be detected, but AMP increased manyfold and reached values at which a participation of soluble 5′-nucleotidase in the catabolism of adenine nucleotides is most likely. 5. These results are in agreement with the hypothesis that the formation of allantoin is controlled by AMP deaminase. They constitute further evidence that 5′-nucleotidase is inactive on AMP, unless the concentration of this nucleotide rises to unphysiological values.  相似文献   

11.
A salicylic acid (SA)-inducible uridine 5′-diphosphate (UDP)-glucose:SA 3-O-glucosyltransferase was extracted from oat (Avena sativa L. cv Dal) roots. Reverse phase high-performance liquid chromatography or anion exchange chromatography was used to separate SA from the product, β-O-d-glucosylsalicylic acid. The soluble enzyme was purified 176-fold with 5% recovery using a combination of pH fractionation, anion exchange, gel filtration, and chromatofocusing chromatography. The partially purified protein had a native molecular weight of about 50,000, an apparent isoelectric point at pH 5.0, and maximum activity at pH 5.5. The enzyme had a Km of 0.28 mm for UDP-glucose and was highly specific for this sugar donor. More than 20 hydroxybenzoic and hydroxycinnamic acid derivatives were assayed as potential glucose acceptors. UDP-glucose:SA 3-O-glucosyltransferase activity was highly specific toward SA (Km = 0.16 mm). The enzyme was inhibited by UDP and uridine 5′-triphosphate but not by up to 7.5 mm uridine 5′-monophosphate.  相似文献   

12.
Humans cannot synthesize vitamin A and thus must obtain it from their diet. β-Carotene 15,15′-oxygenase (BCO1) catalyzes the oxidative cleavage of provitamin A carotenoids at the central 15–15′ double bond to yield retinal (vitamin A). In this work, we quantitatively describe the substrate specificity of purified recombinant human BCO1 in terms of catalytic efficiency values (kcat/Km). The full-length open reading frame of human BCO1 was cloned into the pET-28b expression vector with a C-terminal polyhistidine tag, and the protein was expressed in the Escherichia coli strain BL21-Gold(DE3). The enzyme was purified using cobalt ion affinity chromatography. The purified enzyme preparation catalyzed the oxidative cleavage of β-carotene with a Vmax = 197.2 nmol retinal/mg BCO1 × h, Km = 17.2 μm and catalytic efficiency kcat/Km = 6098 m−1 min−1. The enzyme also catalyzed the oxidative cleavage of α-carotene, β-cryptoxanthin, and β-apo-8′-carotenal to yield retinal. The catalytic efficiency values of these substrates are lower than that of β-carotene. Surprisingly, BCO1 catalyzed the oxidative cleavage of lycopene to yield acycloretinal with a catalytic efficiency similar to that of β-carotene. The shorter β-apocarotenals (β-apo-10′-carotenal, β-apo-12′-carotenal, β-apo-14′-carotenal) do not show Michaelis-Menten behavior under the conditions tested. We did not detect any activity with lutein, zeaxanthin, and 9-cis-β-carotene. Our results show that BCO1 favors full-length provitamin A carotenoids as substrates, with the notable exception of lycopene. Lycopene has previously been reported to be unreactive with BCO1, and our findings warrant a fresh look at acycloretinal and its alcohol and acid forms as metabolites of lycopene in future studies.  相似文献   

13.
The activity of adenosine 5′ triphosphate sulfurylase was determined in crabgrass mesophyll cells, bundle sheath strands, and whole leaf extracts. The enzyme was assayed by following molybdate-dependent pyrophosphate release from ATP, 35SO42− incorporation into adenosine 5′ phosphosulfate, and ATP synthesis dependent upon adenosine 5′ phosphosulfate and inorganic pyrophosphate. With all assays, greater than 90% of the activity was found in extracts from bundle sheath strands. The activities in whole leaf extracts were consistently intermediate between the activities of mesophyll and bundle sheath extracts and extract-mixing experiments gave no indication of enzyme activation or inhibition in vitro. Whole leaf activities were several hundred-fold less than concurrent measurements of ribulose 1,5-bisphosphate and phosphoenolpyruvate carboxylase activities, which is interpreted as being consistent with the relative amounts of elemental carbon and sulfur found in higher plants. A hypothesis is presented for the intercellular compartmentation of sulfur assimilation in relationship to NO3 and CO2 assimilation in leaves of C4 plants.  相似文献   

14.
Amir J  Cherry JH 《Plant physiology》1972,49(6):893-897
A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate.  相似文献   

15.
C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD+ (Km = 34 ± 12 μm) and RhoA (Km = 17 ± 3 μm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 μm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins.  相似文献   

16.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

17.
The guanosine 3′,5′-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 μm relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 μm. The IC50 of ppGpp for GKpm was ∼10 μm. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers'' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.  相似文献   

18.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

19.
Biosynthesis of tropane alkaloids is thought to proceed by way of the diamine putrescine, followed by its methylation by putrescine N-methyltransferase (PMT; EC 2.1.1.53). High PMT activities were found in branch roots and/or cultured roots of several solanaceous plants. PMT was partially purified and characterized from cultured roots of Hyoscyamus albus that contain hyoscyamine as the main alkaloid. Initial velocity studies and product inhibition patterns of PMT are consistent with an ordered bi-bi mechanism, in which the Km values for putrescine and S-adenosyl-l-methionine are 277 and 203 μm, respectively, and the Ki value for S-adenosyl-l-homocysteine is 110 μm. PMT efficiently N-methylated amines that have at least two amino groups separated by three or four methylene groups. Monoamines were good competitive inhibitors of PMT, among which n-butylamine, cyclohexylamine, and exo-2-aminonorbornane were most inhibitory, with respective Ki values of 11.0, 9.1, and 10.0 μm. When n-butylamine was fed to root cultures of H. albus, the alkamine intermediates (tropinone, tropine, and pseudotropine) drastically decreased at 1 mm of the exogenous monoamine, and the hyoscyamine content decreased by 52% at 6 mm, whereas the contents of 6β-hydroxyhyoscyamine and scopolamine did not change. Free and conjugated forms of polyamines were also measured. The n-butylamine treatment caused a large increase in the putrescine content (especially in the conjugated pool), and the spermine content also increased slightly, whereas the spermidine content decreased slightly. The increase in the putrescine pool size (approximately 40 nmol/mg dry weight) was large enough to account for the decrease in the total alkaloid pool size. Similar results were also obtained in root cultures of Datura stramonium. These studies further support the role of PMT as the first committed enzyme specific to alkaloid biosynthesis.  相似文献   

20.
1. The total activity of adenine phosphoribosyltransferase/liver of mice remained constant from 1 to 16 days after birth despite a fourfold increase in liver weight. The total activity of this enzyme increased fivefold from 16 to 36 days and then remained relatively constant at least until 96 days after birth. Total hypoxanthine-phosphoribosyltransferase activity/liver steadily increased between 1 and 57 days after birth. 2. The mean Km of 5-phosphoribosyl pyrophosphate with adenine phosphoribosyltransferase was 10·1μm between 3 and 11 days, at 64 days and at 96 days after birth. Between 17 and 51 days the mean Km value was 3·0μm. The Km of 5-phosphoribosyl pyrophosphate with hypoxanthine phosphoribosyltransferase remained constant at 28·2μm between 2 and 64 days. 3. Adenine-phosphoribosyltransferase activity was stimulated between 15 and 83% by 60μm-ATP when extracts were made between 3 and 11 days, at 64 days or at 96 days after birth. Between 17 and 51 days ATP had little stimulatory effect on the activity of this enzyme. 4. AMP competed with 5-phosphoribosyl pyrophosphate in the reaction catalysed by adenine phosphoribosyltransferase. Liver extracts containing enzyme with a low value of Km for 5-phosphoribosyl pyrophosphate (3μm) had a Km/Ki ratio approximately half that of extracts with a high value of Km (10μm). 5. The results indicate that two different forms of adenine phosphoribosyltransferase can exist in mouse liver at different stages of development. The physiological significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号