首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using ‘Laser Induced Breakdown Spectroscopy’ (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex‐vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
Results are presented from spectroscopic studies of the initial segment of a supersonic plasma jet generated by a pulsed capillary discharge with an ablative carbon-containing polymer wall. Specific features of the spatial distributions of the electron density and intensities of spectral components caused, in particular, by the high electron temperature in the central zone, much exceeding the normal temperature, as well as by the high nonisobaricity of the initial segment of the supersonic jet, are revealed. Measurements of the radiative properties of the hot jet core (the intensity and profile of the Hα and Hβ Balmer lines and the relative intensities of C II lines) with high temporal (1–50 μs) and spatial (30–50 μm) resolutions made it possible to determine general features of the pressure and temperature distributions near the central shock. The presence of molecular components exhibiting their emission properties at the periphery of the plasma jet allowed the authors to estimate the parameters of the plasma in the jet region where “detached” shock waves form.  相似文献   

3.
4.
A study is made of the optical emission spectra of a plasma produced under the action of a microwave beam with a field amplitude of about 3 kV/cm on a metal-dielectric mixture at atmospheric pressure. In the initial stage of the discharge, the plasma is localized in microscale sites at the target surface, the characteristic size of the glowing regions in the target plane being less than 1 mm. In this stage, the target material is evaporated and atomic spectral lines with excitation energies of up to 6–8 eV are emitted. The population temperature of the excited levels, which was determined from the intensity ratios of atomic spectral lines, can be interpreted as the temperature of the atmospheric-pressure plasma. The temperatures determined from different pairs of lines belonging to the same or different elements (Cu, Mo, Li, Fe) fall within the range 7000–9000 K. In the later stage of the discharge, when the characteristic plasma size reaches a few centimeters, no atomic lines are present in the spectrum, which corresponds to a Planckian continuum with a temperature of 2400–3200 K.  相似文献   

5.
Results from experimental studies of multipactor discharges on the surfaces of various dielectrics placed in a high-Q cylindrical microwave cavity excited at the TE013 mode in the X-band are presented. The thresholds for the onset and maintenance of a multipactor discharge on quartz, polycrystalline diamond, lithium fluoride, and Teflon surfaces possessing different roughness are determined. It is shown that, in such a resonance system, a steady multipactor discharge can operate without transition into the stage of microwave breakdown of the desorbed gas. It is found that, due to long-term action of the discharge, a thin carbon-containing film is deposited on the dielectric surface, which leads to an increase in the breakdown threshold.  相似文献   

6.
The giant enhancement of Raman signal near silver colloidal nanoparticles is exploited to study the Raman spectrum of Cytochrome c from Saccharomyces cerevisiae (Yeast Cytochrome c--YCc) in the limit of single-molecule. The investigation is performed on proteins both in solution and immobilised onto a glass slide using a quasi resonant laser line as exciting source with low excitation intensity. In both cases, spectra acquired at different times exhibit dramatic temporal fluctuations in both the total spectrum and in the specific line intensity, even though averaging of several individual spectra reproduces the main Raman features of bulk YCc. Analysis of the spectral intensity fluctuations from solutions reveals a multimodal distribution of some specific Raman lines, consistent with the approaching of single molecule regime. Among other results, the statistical analysis of the spectra from immobilised samples seems to indicate dynamical processes involving the reorientational of the heme with respect to the metal surface.  相似文献   

7.
The results of long-time research of antioxidative activity (AOA) of lipids from tissues of different species and lines of laboratory rodents are generalized. The classification of lipids according to their ability to inhibit the thermal autooxidation of methyl oleate is proposed. The participation of lipids in low-temperature autooxidation reactions at the initiation and chain propagation stages was proved by means of the model proposed. In addition to the lipid antioxidative activity, the initial quantity of peroxides in lipids due to the extent of their unsaturation and lipid antiperoxide activity are proposed for the estimation of the kinetic characteristics of lipids. The dependence of effects on the rate of radical initiation in the system is shown to be caused by the influence of physicochemical properties of lipids on the interrelation coordination and balance of biochemical functions in biological objects differing in the intensity of oxidation processes.  相似文献   

8.
The temperature‐dependent photoluminescences of Y2O3:Eu (6% Eu), Y2O3:Tb (4% Tb) and Y2O3:Tm (1% Tm) were investigated for high‐temperature phosphor thermometry. Two different phases, the monoclinic phase and cubic phase, were considered because the fluorescence spectra vary with the phase. To employ the intensity ratio method, we investigated their photoluminescence spectra under the excitation light of an Hg–Xe lamp as the temperature was elevated from room temperature to more than 1200 K. As a result, it was confirmed that the luminescence intensity of all of the phosphors varied with elevating temperature, i.e. thermal quenching, with the variations depending on the type of rare earth impurity and their phases. The results indicate that Y2O3:Eu phosphors are applicable to the intensity ratio method because they show appropriate variations in the intensity ratio of two emission lines, and they also have strong and sharp peak intensities without excessive optical noise or black body radiation over a wide range of temperatures. The intensity ratios for Y2O3:Tb provide such small variations with temperature that the temperature resolution is low, despite the strong emission intensities. As for Y2O3:Tm, the intensity ratios also have a low temperature resolution and their emission intensities are weak. Therefore, Y2O3:Tb and Y2O3:Tm are not appropriate for the intensity ratio method for phosphor thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A new flow cytometric method is presented that quantifies the frequency of radiation-induced micronuclei in mammalian cell cultures with high precision. After preparing a suspension of main nuclei and micronuclei stained with ethidium bromide and Hoechst 33258, both types of particles are measured simultaneously in a flow cytometer using forward light scatter and three fluorescence emission intensities excited by UV, 488 nm, and by energy transfer from Hoechst 33258 to ethidium bromide. Nonspecific debris overlapping the micronucleus distribution especially in the low fluorescence intensity region was discriminated from micronuclei by calculating ratios of the different fluorescences. The frequencies of radiation-induced micronuclei measured with this new technique agreed well with results obtained by conventional microscopy. The lower limit of the DNA content of micronuclei identified by this technique was found to be about 0.5%-0.75% of the DNA content of G1-phase nuclei. Dose effect curves and the time-dependent induction of micronuclei were measured for two different mouse cell lines.  相似文献   

10.
1980—1999年大兴安岭灌木、草本和地被物林火碳释放估算   总被引:2,自引:0,他引:2  
胡海清  孙龙 《应用生态学报》2007,18(12):2647-2653
应用排放因子法,对大兴安岭林区1980-1999年间主要森林类型中灌木、草本和地被物因森林火灾释放的碳量及主要含碳温室气体量进行了估算.结果表明:不同森林类型灌木、草本和地被物的排放因子不同,以杜香-兴安落叶松林的灌木、草本和地被物层CO2排放因子最大,为93.08%,樟子松林最小,为82.56%;樟子松林CO和CxHy排放因子最大,分别为10.25%和0.84%,杜香-兴安落叶松林最小,分别为6.55%和0.30%.结合灌木、草本和地被物层生物量和碳储量数据,得出20年间大兴安岭典型森林类型灌木、草本和地被物层因森林火灾释放的总碳量为6.56Tg,年平均0.33Tg,约占全国森林火灾碳释放量的11.55%~16.30%;直接释放的含碳温室气体22.03Tg,其中CO2的释放量占总释放量的85.20%,CO占总释放量的14.21%,CxHy占总释放量的0.59%.  相似文献   

11.
Methane emission from rice grown in flooded soil was measured in pot experiments using headspaces with different gas composition. The emission rates varied with the atmospheric composition. Based on the kinetic theory of gases the binary diffusion coefficients for methane in various gases were calculated. The ratios of the measured emissions under a certain atmosphere relative to that in air were similar to the ratios of the binary diffusion coefficients showing that plant-mediated CH4 transport is driven by diffusion. Small deviations from the theoretical ratios of emissions support the hypothesis that mass flow of gas to the submerged parts of the rice plant may depress the upward diffusive CH4 flux. The results in combination with data from the literature suggest that the rate limiting step in plant-mediated methane transport is diffusion of CH4 across the root/shoot junction.  相似文献   

12.
A new kinetic approach using alternative substrates as a tool for studying enzyme mechanisms is described. In this method the substrate to alternative substrate ratio is maintained constant and the common product (or summation of product analogs) is measured. The double-reciprocal plots so obtained at several constant ratios generate different patterns for various mechanisms, thus permitting a choice of kinetic model. In some cases, secondary intercept plots are utilized as a diagnostic aid. Another feature of this approach is that most of the resultant plots are linear. The graphical patterns for four cases of two-substrate, two-product reactions are presented as examples. These patterns allow one to differentiate several mechanisms which are not distinguishable by conventional alternative substrate, competitive inhibitor, or product inhibition studies alone. When used in combination with other methods, various mechanisms involving isomerization and abortive complex formation can be differentiated even if only one alternative substrate is available.  相似文献   

13.
Fluorescence photomicrographs show that the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) binds to hydrophobic components of intact 3T3 cells. Cells exposed to ANS exhibit fluorescence in the cytoplasm, intense nuclear membrane fluorescence, and well-defined fluorescent nucleoli. Fluorescence titrations of 3T3 cells with ANS show a decrease in fluorescence intensity, a blue shift of native cell emission with increasing ANS concentration and the appearance of a new peak due to ANS fluorescence. These fluorescence effects are ascribed to energy transfer processes involving bound ANS and the tryptophan and tyrosine residues of cellular proteins. ANS bound to 3T3 cells appears to quench the long wavelength component of the cellular tryptophan fluorescence, resulting in an unmasking of tryptophan and tyrosine emission at shorter wavelengths.  相似文献   

14.
Inshore massive corals often display bright luminescent lines that have been linked to river flood plumes into coastal catchments and hence have the potential to provide a long-term record of hinterland precipitation. Coral luminescence is thought to result from the incorporation of soil-derived humic acids transported to the reef during major flood events. Corals far from terrestrial sources generally only exhibit dull relatively broad luminescence bands, which are attributed to seasonal changes in coral density. We therefore tested the hypothesis that spectral ratios rather than conventional luminescence intensity provide a quantitative proxy record of river runoff without the confounding effects of seasonal density changes. For this purpose, we have developed a new, rapid spectral luminescence scanning (SLS) technique that splits emission intensities into red, green and blue domains (RGB) for entire cores with an unprecedented linear resolution of 71.4 μm. Since humic acids have longer emission wavelength than the coral aragonite, normalisation of spectral emissions should yield a sensitive optical humic acid/aragonite ratio for humic acid runoff, i.e., G/B ratio. Indeed, G/B ratios rather than intensities are well correlated with Ba/Ca, a geochemical coral proxy for sediment runoff, and with rainfall data, as exemplified for coral records from Madagascar. Coral cores also display recent declining trends in luminescence intensity, which are also reported in corals elsewhere. Such trends appear to be associated with a modern decline in skeletal densities. By contrast, G/B spectral ratios not only mark the impact of individual cyclones but also imply that humic acid runoff increased in Madagascar over the past few decades while coral skeletal densities decreased. Consequently, the SLS technique deconvolves the long-term interplay between humic acid incorporation and coral density that have confounded earlier attempts to use luminescence intensities as a proxy for river runoff.  相似文献   

15.
Palo K  Mets U  Loorits V  Kask P 《Biophysical journal》2006,90(6):2179-2191
Fitting of photon-count number histograms is a way of analysis of fluorescence intensity fluctuations, a successor to fluorescence correlation spectroscopy. First versions of the theory for calculating photon-count number distributions have assumed constant emission intensity by a molecule during a counting time interval. For a long time a question has remained unanswered: to what extent is this assumption violated in experiments? Here we present a theory of photon-count number distributions that takes account of intensity fluctuations during a counting time interval. Theoretical count-number distributions are calculated via a numerical solution of Master equations (ME), which is a set of differential equations describing diffusion, singlet-triplet transitions, and photon emission. Detector afterpulsing and dead-time corrections are also included. The ME-theory is tested by fitting a series of photon-count number histograms corresponding to different lengths of the counting time interval. Compared to the first version of fluorescence intensity multiple distribution analysis theory introduced in 2000, the fit quality is significantly improved. It is discussed how a theory of photon-count number distributions, which assumes constant emission intensity during a counting time interval, may also yield a good fit quality. We argue that the spatial brightness distribution used in calculations of the fit curve is not the true spatial brightness distribution. Instead, a number of dynamic processes, which cause fluorescence intensity fluctuations, are indirectly taken into account via the profile adjustment parameters.  相似文献   

16.
V Bloomfield 《Biopolymers》1966,4(6):683-693
The theory of the steady-state kinetics of irreversible enzyme-catalyzed homopolymerization and copolymerization on primers has been developed. The rate law for homopolymerization is of the Michaelis-Menten form, but the kinetic parameters depend on primer concentration. Copolymerization has been treated for two monomers considering both terminal and penultimate effects and for four monomers considering terminal effects. The composition equations and conditional probabilities for monomer succession are identical for enzymatic and nonenzymatic processes, because the steady-state approximation is used in both cases. The reactivity ratios and steady-state velocities are different, however. Examination of published results for AU and UG copolymers synthesized by polynucleotide phosphorylase permits evaluation of reactivity ratios for the AU copolymer and indicates that penultimate effects may be operative in both cases.  相似文献   

17.
For any element which is incorporated into biomass, the biogeochemical cycle of that element in a given ecosystem will be coupled to that of any other element similarly incorporated. The mutual interaction of two such cycles is examined using a simple model in which each cycle is constrained into four compartments. In each cycle the assimilation rate (primary productivity) is related in a non-linear fashion to the two nutrients and to biomass. The interactions are represented by combining a hyperbolic dependence for each nutrient (involving a "Michaelis constant") with a logistic equation governing the dependence of rate on biomass (involving a "carrying capacity"). The response of the model to perturbation (e.g. mobilization of an abiotic reserve) is strongly governed by the values assigned to these constants. The coupled cycles can exhibit positive feed-back with anomalous responses of the steady state and time-dependent solutions may exhibit complex oscillatory behaviour. Both the steady-state sensitivity and the kinetic behaviour of such coupled systems are simplified if the range of atomic ratios permitted by the assimilation process is restricted. It will therefore be of importance to determine under what conditions the assimilation rates for different elements are governed by mass-action effects (Liebig's Law) or by stoichiometric constraints (Redfield ratios).  相似文献   

18.
Results are presented from experimental studies of a pulsed source of soft X-ray (SXR) emission with photon energies in the range of 0.4–1 keV and an output energy of 2–10 kJ. SXR pulses with a duration of 10–15 μs were generated in collisions of two plasma flows propagating toward one another in a longitudinal magnetic field. The plasma flows with velocities of (2–4) × 107 cm/s and energy contents of 70–100 kJ were produced by two electrodynamic coaxial accelerators with pulsed gas injection. Nitrogen and neon, as well as their mixtures with deuterium, were used as working gases. The diagnostic equipment is described, and the experimental results obtained under different operating conditions are discussed. In particular, X-ray spectroscopy was used to study the high-temperature plasma produced in a collision of two plasma flows. The observed intensities of spectral lines are compared with the results of detailed kinetic calculations performed in a steady-state approximation. The calculations of the nitrogen and neon kinetics have shown that the electron temperature of a nitrogen plasma can be most conveniently determined from the intensity ratio of the resonance lines of He- and H-like nitrogen ions, while that of a neon plasma, from the intensity ratio between the resonance line of He-like Ne IX ions and the 3p?2s line of Li-like Ne VIII ions. In the experiments with plasma flows containing nitrogen ions, the electron temperature was found to be ≈120 eV, whereas in the experiments with plasma flows containing neon ions, it was 160–170 eV.  相似文献   

19.
Kinetic mechanism of calcium binding to whiting parvalbumin   总被引:1,自引:0,他引:1  
H D White 《Biochemistry》1988,27(9):3357-3365
Calcium binding to whiting parvalbumin induces large changes in the fluorescence, absorption, and circular dichroism spectra of the protein. The fluorescence emission maximum of the single tryptophan shifts from 325 to 348 nm upon the removal of calcium and decreases in intensity by 50%. All of the spectral changes are linear between 0 and 2 mol of calcium bound/mol of protein, which suggests that the only protein species present in significant concentration are PA0 and Pa-Ca2. The kinetics of calcium binding measured by stopped-flow fluorescence are accurately single exponential from 2 X 10(-7) to 2 X 10(-4) M free calcium. The kinetics of calcium dissociation show a pronounced lag and are best fit by two rate constants of 1.2 and 3.0 s-1. The minimal kinetic mechanism that adequately describes the rate and equilibrium data is a branched pathway mechanism in which the rate and equilibrium constants are markedly different for each pathway: (formula; see text) At [Ca] less than 2 microM the upper kinetic pathway of calcium binding predominates whereas at [Ca] greater than 2 microM calcium binding occurs predominantly by the lower kinetic pathway. Calcium dissociates primarily by the upper kinetic pathway.  相似文献   

20.
Fluorescence decay kinetics of chlorophyll in photosynthetic membranes   总被引:2,自引:0,他引:2  
The absorption of light by the pigments of photosynthetic organisms results in electronic excitation that provides the energy to drive the energy-storing light reactions. A small fraction of this excitation gives rise to fluorescence emission, which serves as a sensitive probe of the energetics and kinetics of the excited states. The wavelength dependence of the excitation and emission spectra can be used to characterize the nature of the absorbing and fluorescing molecules and to monitor the process of sensitization of the excitation transfer from one pigment to another. This excitation transfer process can also be followed by the progressive depolarization of the emitted radiation. Using time-resolved fluorescence rise and decay kinetics, measurements of these processes can now be characterized to as short as a few picoseconds. Typically, excitation transfer among the antenna or light harvesting pigments occurs within 100 psec, whereupon the excitation has reached a photosynthetic reaction center capable of initiating electron transport. When this trap is functional and capable of charge separation, the fluorescence intensity is quenched and only rapidly decaying kinetic components resulting from the loss of excitation in transit in the antenna pigment bed are observed. When the reaction centers are blocked or saturated by high light intensities, the photochemical quenching is relieved, the fluorescence intensity rises severalfold, and an additional slower decay component appears and eventually dominates the decay kinetics. This slower (1-2 nsec) decay results from initial charge separation followed by recombination in the blocked reaction centers and repopulation of the excited electronic state, leading to a rapid delayed fluorescence component that is the origin of variable fluorescence. Recent growth in the literature in this area is reviewed here, with an emphasis on new information obtained on excitation transfer, trapping, and communication between different portions of the photosynthetic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号