首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ontogenetic study of the sieve element protoplast of Nicotiana tabacum L. by light and electron microscopy has shown that the P-protein component (slime) arises as small groups of tubules in the cytoplasm. These subsequently enlarge to form comparatively large compact masses of 231 ± 2.5 (SE)A (n = 121) tubules, the P-protein bodies. During subsequent differentiation of the sieve element, the P-protein body disaggregates and the tubules become dispersed throughout the cell. This disaggregation occurs at about the same stage of differentiation of the sieve elements as the breakdown of the tonoplast and nucleus. Later, the tubules of P-protein are reorganized into smaller striated 149 ± 4.5 (SE)A (n = 43) fibrils which are characteristic of the mature sieve elements. The tubular P-protein component has been designated P1-protein and the striated fibrillar component P2-protein. In fixed material, the sieve-plate pores of mature sieve elements are filled with proteinaceous material which frays out into the cytoplasm as striated fibrils of P2-protein. Our observations are compatible with the view that the contents of contiguous mature sieve elements, including the P-protein, are continuous through the sieve-plate pores and that fixing solutions denature the proteins in the pores. They are converted into the electron-opaque material filling the pores.  相似文献   

2.
Summary P-protein and the changes it undergoes after wounding of sieve tubes of secondary phloem in one- to two-year old shoots ofHevea brasiliensis has been studied using electron microscopy. The P-protein in the form of tubules with a diameter of 8–9 nm and a lumen of 2–2.5 nm occurred in differentiating sieve elements and appeared as compact bodies which consisted of small aggregates of the tubules. As the sieve elements matured, these P-protein bodies dispersed with a disaggregation of the tubules before they turned into striated fibrils, 10–11 nm in diameter. In wounding experiments, as the mature sieve elements collapsed after cutting, their striated P-protein converted into tubules. These tubules were the same in ultrastructure as the tubules in differentiating sieve elements and they often were arranged in crystalline aggregates.  相似文献   

3.
H. -Dietmar Behnke 《Protoplasma》1996,193(1-4):213-221
Summary Bundles of decorated tubules found in the sieve elements ofNymphaea have been studied with the transmission electron microscope. Comparatively straight tubules (100 nm in diameter) arise from the endoplasmic reticulum during early stages of sieveelement development and subsequently associate into bundles of up to 100 tubules that parallel the longitudinal cell axis. From the start of their formation the tubules are structurally distinct from other ER profiles due to their dense decoration with particles. High magnifications reveal an orderly array of the particles (about 24 surround a 100 nm tubule) and suggest a modification of their membrane so that it is no longer dissolvable into a regular three-layered structure. Later during sieve-element ontogeny the decorated tubules get invaginated by smooth ER membranes, thereby squeezing out the intratubular (extracytoplasmic) space. As a result a double mantle is formed that surrounds a plasmatic cylinder. Decorated 100 nm tubules with inner membranes are present in enucleate mature sieve elements ofNymphaea alba andN. tuberosa. Considerably larger tubules (about 200 nm in diameter) were found inN. Candida andN. tetragona and occasionally also inNuphar and Barclaya, two other genera from the same family. The decoration of the tubules and their subsequent invagination by smooth membranes are discussed with respect to the controlled autolysis of sieve elements.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

4.
Summary The ultrastructure of the primary sieve elements of several papilionaceous legumes was studied using hypocotyl and young internode segments fixed in glutaraldehyde followed by osmium tetroxide. In particular, the study sought to determine whether the crystalline flagellar inclusions characteristic of these species are developmentally related to the P-protein bodies present in the phloem of these and other legumes and of angiosperms generally. The crystalline inclusions consist of a central body terminated at one or both ends by a gradually tapering tail. The central body is usually spindle shaped in longitudinal section and square in cross section. In all species examined, the inclusion is first seen as a small, thin crystal in the cytoplasm of young sieve elements. The crystal enlarges and acquires tails as the sieve element develops. In certain species, exemplified byDesmodium canadense, numerous tubules are formed in the cytoplasm near the crystal and appear to be concerned in its growth. The observations on the structure and interactions of these two components, tubules and crystalline inclusions, suggest that both represent forms of P-protein: the tubules are continuous with the crystal and are striated like the crystal near the tubule-crystal junction, suggesting that they are adding onto the crystal body; the tubules closely resemble the P-protein tubules described in the literature in that they measure 157 Å in diameter, accumulate in spindle-shaped bundles, and disperse into striated fibrils late in the ontogeny of the sieve element; and finally, the crystal also disperses into fine filaments. The crystalline inclusion therefore probably represents still another aggregation state of P-protein, one that is characteristic of papilionaceous legumes. The different stages of crystal aggregation and the diverse forms of P-protein now known are discussed briefly in relation to the control of macromolecular assembly and subunit packing.  相似文献   

5.
F. B. P. Wooding 《Planta》1969,85(3):284-298
Summary A study of the ultrastructure of cultured tobacco callus phloem shows that it is very similar to that found in the intact stem.Fibrils similar to the P protein, characteristic of angiosperm phloem, are found initially within the rough endoplasmic reticulum. This has not been shown previously.Preincubation of the callus at 0 or 50° C or in solutions of cholchicine prior to fixation have no effect on the relative proportions or the individual structures of the two forms of P protein found in tobacco callus phloem sieve elements. However 1% colchicine does reduce the number of microtubules found in callus cells by up to 80%.The morphological similarity between P 1 protein tubules and microtubules therefore appears coincidental and not due to a different arrangement of a common basic unit.The function of the P protein is considered and reasons for the comparative stability of plant microtubules compared with their animal equivalents are discussed.  相似文献   

6.
Light and electron microscopical observations of the cells of the phloem of Cucurbita maxima have shown that two distinct types of P-protein bodies are formed: a larger type which arises as fine fibrils and a smaller type which apparently arises as groups of tubules. The tubules of the smaller type of body measure 242 ± 3.6 (SE) A (n = 48) and appear morphologically identical with the P1-protein tubules of Nicotiana tabacum L. In some of these P1-protein bodies the tubules are arranged in a regular manner with a center-to-center distance of 295 A. The P protein of the larger type of P-protein body is first apparent in the cytoplasm as small aggregates of fine fibrils. This P-protein component has been designated P3 protein. As the P3 protein accumulates it is organized into large bodies. Some of these bodies contain only P3 protein, others a tubular form of protein, and still others a combination of P3 protein and a tubular form. This variability indicates that there is a developmental sequence of the formation of tubules from the P3-protein fibrils. These tubules measure 179 ± 8.2 (SE) A (n = 31) and have been designated P4 protein.  相似文献   

7.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

8.
电镜超微结构观察和免疫金标记显示:受蚕豆萎蔫病毒2号(Broad bean wilt virus 2,BBWV 2)中国分离物B935侵染的豌豆(Pisum sativum)和蚕豆(Vicia faba)叶细胞中膜结构增生,形成膜结构增生区,病毒以结晶体和管状体形式存在于细胞质中。在病变早期,叶肉细胞的胞间连丝处连接有小管结构,病毒样颗粒呈纵列排在小管中,穿越胞间连丝的小管能被BBWV 2的金标记抗体特异性标记。维管束组织的薄壁细胞、伴胞及转移细胞内存在膜增生区及病毒管状体,在筛管壁附近存在的病毒样颗粒能被BBWV 2金标记抗体特异性标记。实验结果表明BBWV 2胞间运动形式与豇豆花叶病毒(CPMV)相似,以完整粒子通过在胞间连丝处形成的小管结构穿越胞间连丝;细胞质中存在的直径160nm管状体只是一种病毒聚集体,与胞间运动无直接关系;该病毒在筛管中可能也是以完整粒子形式进行长距离转运的。  相似文献   

9.
The ultrastructure of the sieve elements ofAustrobaileya is compared with that of angiosperm sieve tubes and gymnosperm sieve cells (mostly fromCycadales). Except for the size of the sieve poresAustrobaileya shares all ultrastructural characters (e.g., chromatolytic nuclear degeneration, presence of p-protein, formation of sieve pores from unbranched plasmodesmata) and other features (e.g., companion cells) with angiosperm sieve tubes. Gymnosperm sieve cells on the contrary are characterized by pycnotic nuclear degeneration, absence of p-protein, formation of sieve areas from branched plasmodesmata with median cavities. — The exact ordinal assignment ofAustrobaileya within the subclassMagnoliidae is still disputed, a placement close to eitherMyristicaceae andWinteraceae orMonimiaceae being possible as judged from both S-type sieve-element plastids and p-protein bodies. — On the basis of the ultrastructural results fromAustrobaileya it is proposed to reconsider concepts and terminology of sieve elements. i.e., to include features from sieve pore development, nuclei degeneration and presence of specific proteins into the definitions and to restrict the term sieve cell to gymnospermous sieve elements which differ much from those of other vascular plants.  相似文献   

10.
Summary This paper is the second in the series dealing with the ultrastructure ofTetragonia expansa Murr. infected with the beet yellows virus. It considers the relation of the virus to the conducting cells in the phloem and the xylem. Virus particles occurred in mature sieve elements, their amount increasing as the infected leaf became older. In older leaves some sieve elements were completely blocked with virus. Virus particles were seen in pores of sieve plates, in plasmodesmata interconnecting sieve elements and parenchyma cells, and in those between parenchyma cells. Mature and immature tracheary elements also contained virus particles. Presence of inclusions composed of vesicles and virus in some immature tracheary elements may indicate that virus multiplies in these cells. No vesicles and no virus particles were discovered in immature sieve elements.This work was supported in part by National Science Foundation grant GB-5506.  相似文献   

11.
Summary Developing protophloem sieve elements in roots of wheat are arranged in single vertical files. In the last immature differentiating sieve element bearing ribosomes the proximal end of the cytoplasm displays a diluted appearance in contrast to the distal end where the cytoplasm exhibits a considerably increased electron density. Differences can also be observed in ribosome quantity, organelle ultrastructure and the time of initiation of cell component degradation, those at the proximal end disorganizing first, suggesting a nonsimultaneous disorganization of the cell components in the two areas. This phenomenon, termedheterochronic lysis, is presumably an expression of an existing polarity not detectable in younger stages, but it might also be the result of an asynchronous enzymatic activity.Abbreviations CW Cell wall - D dictyosome - ER endoplasmic reticulum - M mitochondrion - N nucleus - P plastid - SE sieve element - SP sieve plate  相似文献   

12.
Abstract

Researches on ultrastructure of Avena coleoptile. 3. The sieve elements. — A study on the ultrastructural organization of the mature sieve elements of Avena coleoptile has been carried out. Data suggest that functional phloem tubes are alive and remain alive until they are working. Judging on morphological basis, the metabolic activity of sieve elements should be of peculiar type and low in comparison to that of the companion cells. In fact the cytoplasm is located in a narrow parietal strand, mitochondria, Golgi apparatus and endoplasmic reticulum are present, but they appear very modified; plastids and nucleus are absent. The cytoplasm is bounded externally by a normal plasmalemma, whilst the vacuole has no visible limits: a tonoplast is, therefore not identifiable.

The strands connecting the superimposed sieve elements with one another through the sieve plate result to be made by a double membrane system very similar to the endoplasmic reticulum, which we believe to realize cytoplasmic continuity between phloem tubes.

The data reported are more favorable to the existence in the sieve tubes of an active mechanism of translocation of organic solutes than a passive mass-flow.

The collaboration of companion cells in the translocation mechanism has been discussed.  相似文献   

13.
The vascular system of the stem of Stylobasium was investigated during its primary and secondary phases with both light and electron microscopic methods. It contains collateral bundles arranged in a ring, separated by rays which undergo regular cambial growth. The phloem consists of short sieve elements connected to sieve tubes by simple sieve plates, companion cells of the same length, and phloem parenchyma cells. During their autophagy-like differentiation and maturation, typical of all angiosperms, the sieve elements of Stylobasium have a peculiar feature, whereby they develop and retain form-Pfs plastids (containing protein filaments and starch). The sieve-element plastids of the two Stylobasium species, and of some 100 species belonging to taxa of which Stylobasium had been considered to be a possible member, have been studied by transmission electron microscopy. With the exception of a few species with form-Pcs plastids (containing a single small protein crystal in addition to starch), the great majority of taxa studied are characterized by S-type sieve-element plastids (containing starch only). The presence of form-Pfs plastids in Stylobasium supports its separation into the unigeneric Stylobasiaceae and the placement of this family close to other form-Pfs or form-Pcfs-containing taxa. While other characters would exclude an affiliation to the Magnolianae (form-Pfs plastids in Canella) or Caryophyllales (form-Pfs plastids in Microtea), an association with the form-Pcfs families Connaraceae and Mimosaceae is positively considered and corresponds to their frequent allocation close to the Rutales and Sapindales. Within the Rutales/Sapindales the sizes of sieve-element plastids (average diameter) range from very large (e.g. in the Julianaceae) to comparatively small (e.g. in Aceraceae) and are used to group the families. The sieve element characters of the Coriariaceae (tiny plastids with almost no starch, wide sieve plate pores, copious P-protein) suggest their removal from Rutales/Sapindales into the neighbourhood of the Cucurbitaceae.  相似文献   

14.
Summary Mesophyll containing the minor veins from leaves ofTetragonia expansa Murr. was examined in preparation for a study of effects of beet yellows virus on the leaf tissues of this plant. The sieve elements throughout the minor veins exhibit the characteristics commonly found in this type of cell in dicotyledons. The cells are connected with one another by sieve plates and with contiguous parenchyma cells by branched plasmodesmata. Mature sieve elements are enucleate and lack ribosomes. No tonoplast was discerned in these cells. Mitochondria, plastids, and sparse endoplasmic reticulum are retained in mature cells. The plastids, which contain a massive fibrous ring of proteinaceous material, resemble the sieve element plastids ofBeta. The P-protein in the sieve elements is occasionally composed of tubules; more commonly it is represented by loose helices. The tracheary elements have scalariform secondary thickenings. In regions free of these thickenings, the primary wall largely disintegrates; only some loosely arranged fibrils remain. The mesophyll and vascular parenchyma cells contain the various organelles characteristic of living plant cells but vary in degree of vacuolation and in density of cytoplasm. Some vascular parenchyma cells have particularly dense protoplasts. They contain numerous ribosomes and their background matrix consists of a dense population of fine fibrils. Occasional vascular parenchyma cells contain the tubular spiny cell component first recognized inBeta. This work was supported in part by National Science Foundation grant GB-5506.  相似文献   

15.
Immediately after their stylets penetrate a phloem sieve element, aphids inject saliva into the sieve element for approximately 30–60 s before they begin to ingest phloem sap. This salivation period is recorded as waveform E1 in electrical penetration graph (EPG) monitoring of aphid feeding behavior. It has been hypothesized that the function of this initial period of phloem salivation is to reverse or prevent plugging of the sieve element by one of the plant's phloem defenses: formation of P‐protein plugs or callose synthesis in the sieve pores that connect adjacent sieve elements. This hypothesis was tested using the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), and faba bean, Vicia faba L. (Fabaceae), as a model system, and the results do not support the hypothesis. In legumes, such as faba bean, P‐protein plugs in sieve elements are formed by dispersal of proteinaceous bodies called forisomes. Contrary to the hypothesis, the great majority of sieve element penetrations by pea aphid stylets do not trigger forisome dispersal. Thirteen sieve elements were cryofixed early in phloem phase before the aphids could complete their salivation period and the forisomes were not dispersed in any of the 13 samples. However, in these samples, the aphids completed on average a little over half of their normal E1 salivation period before they were cryofixed. Thus, it is possible that sieve element penetration triggered forisome dispersal in these samples but the abbreviated period of salivation was still sufficient to reverse dispersal. To rule out this possibility, 17 sieve elements were cryofixed during R‐pds, which are an EPG waveform associated with sieve element penetration but without the characteristic E1 salivation that occurs during phloem phase. In 16 of the 17 samples, the forisomes were not dispersed. Thus, faba bean sieve elements usually do not form P‐protein plugs in response to penetration by pea aphid stylets. Consequently, the characteristic E1 salivation that occurs at the start of each phloem phase does not seem to be necessary to prevent a plugging response because penetration of sieve elements during R‐pds does not trigger forisome dispersal despite the absence of E1 salivation. Furthermore, as P‐protein plugs do not normally form in response to sieve element penetration, E1 salivation that occurs at the start of each phloem phase is not a response to development of a P‐protein plug. Thus, the E1 salivation period at the beginning of the phloem phase appears to have function(s) unrelated to phloem sealing.  相似文献   

16.
Abstract

The ultrastructure of sieve tubes in leaf petioles of HEDERA HELIX. — The structural organization of the sieve elements in Hedera leaf petiole at the beginning of the second year of life has been studied. At this stage of life the sieve tubes are completely developed, but still in full activity.

Their plasmatic structures, though altered, show that they are still alive. The cytoplasm forms a parietal layer; mitochondria, endoplasmic reticulum and plastids are present although very peculiar in aspect. The cytoplasm is bounded externally by a plasmalemma; on the contrary no tonoplast is detectable.

The data reported in this paper are favourable to the idea of an active partecipation of the sieve tubes in the translocation of organic solutes, in agreement with the findings concerning the oat coleoptile.  相似文献   

17.
Both thick- and thin-walled sieve tubes in leaf-blade veins of Hordeum vulgare L. exhibit a distinct, electron-opaque inner wall layer after fixation in glutaraldehyde-osmium tetroxide and staining with uranyl acetate and lead citrate. This inner wall layer is thickest at the sieve plates and lateral sieve areas where it is permeated by a labyrinth of tubules formed by the plasmalemma. Along the lateral walls between sieve areas the inner wall layer apparently is penetrated by numerous microvilli-like evaginations of the plasmalemma, giving the cell wall-plasmalemma interface the appearance of a brush border. It is suggested that a similar brush-border-like structure may occur at the cell wall-plasmalemma interface of sieve elements in a wide variety of vascular plants.Abbreviation ER endoplasmic reticulum  相似文献   

18.
Katherine Esau 《Protoplasma》1971,73(2):225-238
Summary The P-protein in sieve elements of leaves ofMimosa pudica L. is first discernible as fine fibrous material which forms homogeneous aggregates. Ribosomes, rough endoplasmic reticulum, and dictyosomes with associated vesicles occur in the cytoplasm surrounding the aggregates. The plastids and mitochondria are in a parietal position in the parts of the cell where the nascent P-protein accumulates. In a later stage, the fibrillar material is organized into a three-dimensional system of five- and six-sided elongated compartments. The corners of the compartments appear solid at first, then they become electron lucent in the center and assume tubular form. Aggregates of mature P-protein tubules usually occur near the compartmentalized system. Tubules in pentagonal or hexagonal arrangements may be present in the aggregates and may be partly interconnected. The conclusion was drawn that the P-protein tubules are assembled at the corners of compartments within a continuous orderly system. The fully formed tubules occur first in aggregates, the P-protein bodies. Later the aggregates become loose and partly dispersed. Many of the dispersed tubules assume a loose, extended, helical form characteristic of P-protein in older sieve elements.This work was supported in part by National Science Foundation grant GB-5506. I am also grateful to MissHatsume Kosakai and Mr.Robert H.Gill for technical assistance.  相似文献   

19.
Spiral tubule structures were observed in sieve elements of Pritchardia and Cocos palms. The spiral tubules were 80–120 nm wide and composed of alternating electron-lucent and electron-dense bands 11–16 nm wide which spiraled around a central core.  相似文献   

20.
Summary Haustoria ofCuscuta odorata R. & P. andC. grandiflora H.B.K. show continuous traces of sieve elements, connecting the phloem of the host with that of theCuscuta shoot. The continuity of this haustorial phloem is discernible by callose fluorescence after staining with aniline blue. The fine structural criteria for sieve tubes are analyzed electronmicroscopically, with special respect to sieve pores, P-protein, and a distinct wall-standing smooth surfaced ER. Within the central part of the haustorium sieve tubes are elongated, while the elements abutting the phloem of theCuscuta shoot are nearly isodiametric in shape. Both elements are associated with rather large companion cells, derived from an unequal division.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号