首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of N-deposition on ion trapping by B-horizons of Danish heathlands   总被引:2,自引:1,他引:1  
Nielsen  Knud Erik  Hansen  B.  Ladekarl  Ulla L.  Nørnberg  Per 《Plant and Soil》2000,223(1-2):267-278
Coastal and inland heaths constitute a dominating fraction of the relatively few semi-natural ecosystems in Denmark. At the inland heath, the soil forming factors have been active with the same vegetation type during the last 2000 years, whereas at the coastal heath, these soil forming factors have only been active over a couple of hundred years, due to the activity of windblown sand. Effects on ion-balance and soil processes of nitrogen deposition on a young dune heath and an old inland heath have been investigated. Different levels of NH4NO3have been applied to the two heathlands, and rain, throughfall water and soil water chemistry below the experimental plots have been analysed. Results show that the ability to retain added, as well as deposited, nitrogen requires the presence and the integrity of a humifyed H-subhorizon. When the mor-layer for some reason breaks down, the nutrients will be retained by the B-horizons as a kind of back-up, and most probably be reused by the new vegetation. One year after destructive heather beetles attack on the inland heath, the mor-layer started to decompose. A large translocation of organic compounds, complexed associated cations and nitrogen-species, started from the mor-layer to the top of the B-horizon where they precipitate. The podzolic B-horizons can be seen as nutrient trap to the mor-layer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
黄土高原土壤水分变化的时空特征分析   总被引:66,自引:8,他引:66  
对晋西北砖窑沟流域荒地7年土壤水分定位观测表明,生长期土壤水分动态主要受降水量及其分配的影响.一般年份生长期土壤水分动态可分为3个时段:1)春末夏初土壤水分消耗期;2)夏末秋初土壤水分蓄积期和3)秋末冬初土壤水分消耗期.0-300cm土层水分含量的季节变化与测定序号的关系方程为:1)直线型(1988,1990),2)指数型(1992,1995)和3)抛物线型(1993).以150cm为界,下部土壤水分与上部的比大于1.不同降水年土壤湿度与土层深度的关系方程均为三次抛物线型.土壤水分的变异系数随深度的增加而减小.0-300cm内的土壤水分剖面可分为活跃层(200cm以上)、过渡层(200-250cm)和稳定层(250cm以下).各层深度随降水量及其分配的不同而变化.不同降水年荒地土壤水分的方差分析总体差异显著,但各组间的均值配对比较结果不同.特涝年的荒地土壤水分与其它年份差异均显著.荒地与柠条林地的土壤水分差异显著,但与河北杨林地和小叶杨林地的土壤水分差异不显著.本文采用的定量研究方法有助于黄土高原不同地区和不同植被条件下土壤水分的定量比较.  相似文献   

3.
Summary The water relations of Picea abies in a healthy stand with green trees only and a declining stand with trees showing different stages of needle yellowing were investigated in northern Bavaria. The present study is based on observations of trees differing in their nutritional status but apparently green on both sites in order to identify changes in the response pattern which might be caused by atmospheric concentrations of air pollutants and could lead to the phenomenon of decline. Transpiration was measured as water flow through the hydroactive xylem using an equilibrium mass-flow measurement system. Total tree transpiration was monitored diurnally, from July 1985 until October 1985 at both sites. The relationship between transpiration and meteorological measurements indicated that transpiration was a linear function of the vapor pressure deficit. No differences in transpiration of green trees were observed between the two sites. Canopy transpiration was 57%–68% of total throughfall and 41%–54% of total rainfall. Due to this positive water balance, soil water potential at 10 and 20 cm depths remained close to-0.02 MPa (max.-0.09 MPa) for most of the summer. Soil water potential was correlated with the difference between the weekly precipitation and transpiration. No differences in the water relations of apparently healthy trees in the two P. abies stands were observed. It is concluded that differences between green trees at the two sites in terms of nutrient relations or growth rate cannot be explained by changes in whole-tree transpiration or soil water status.  相似文献   

4.
J. Seiler  E. Matzner 《Plant and Soil》1995,176(1):139-147
Our aims were to investigate the spatial variability of throughfall chemistry and soil parameters as influenced by stem distance and to evaluate the implication of the observed systematic and random patterns for the sampling strategy.One hundred throughfall samplers with a sampling area of 106 cm2 each were established in a systematic grid around 5 trees in a mature Norway spruce; site of the Fichtelgebirge (Germany). One hundred soil cores were taken with an auger of 50 cm2 next to the throughfall samplers. Soil samples were stratified according to genetic soil horizons and analysed for pH, exchangeable NH4 +, SO4 2– and total-S. Throughfall samples were collected over a period of 6 months. For each sampler an aliquod sample was mixed over the observation period and analysed for major ions.The spatial variability of the element concentrations in throughfall, expressed by the coefficient of variance, was 21–164%, depending on the element considered. For precipitation volume, the coefficient of variance was only 3%. The distance to the stem influenced most element concentrations in throughfall with increasing concentrations approaching the stem. Steepest gradients were observed in case of SO4 2– and H+.The spatial variability of the investigated soil parameters was also very high with the exception of pH. The SO4 2– content of the forest floor reflected the gradients observed in throughfall, while for the other investigated soil parameters and soil horizons no significant relations to stem distance were found.To determine site representative throughfall concentrations and soil properties with the sample volumes and time intervals we used, the number of samples required to get a statistical error of less than 10% (with 95% probability) can be very high. In case of throughfall, more than 100, and in case of the soil parameters, more than 300 replicates would be required.  相似文献   

5.
Espeleta JF  West JB  Donovan LA 《Oecologia》2004,139(3):486-349
Plants can significantly affect ecosystem water balance by hydraulic redistribution (HR) from dry to wet soil layers via roots (also called hydraulic lift, HL, when the redistribution is from deep to shallow soil). However, the information on how co-occurring species in natural habitats differ in HL ability is insufficient. In a field study, we compared HL ability of four tree species (including three congeneric oak species) and two C4 bunch grass species that co-occur in subxeric habitats of fall-line sandhills in southeastern USA. Soil water potentials (s) were recorded hourly for 3 years both in large chambers that isolated roots for each species and outside the chambers. Outside of root chambers, soil drying occurred periodically in the top 25 cm and corresponded with lack of precipitation during the summer growing season. Soil moisture was continuously available at a 1 m depth. HL activity was observed in three of the tree species, with greater frequency for Pinus palustris than for Quercus laevis and Q. incana. The fourth tree species Q. margaretta did not exhibit HL activity even though it experienced a similar s gradient. For the C4 bunch grasses, Aristida stricta exhibited a small amount of HL activity, but Schizachyrium scoparium did not. The capacity for HL activity may be linked to the species ecological distribution. The four species that exhibited HL activity in this subxeric habitat are also dominant in adjacent xeric sandhill habitats, whereas the species that did not exhibit HL are scarcely found in the xeric areas. This is consistent with other studies that found greater fine root survival in dry soil for the four xeric species exhibiting HL activity. The differential ability of these species to redistribute water from the deep soil to the rapidly drying shallow soil likely has a strong effect on the water balance of sandhill plant communities, and is likely linked to their differential distribution across edaphic gradients.An erratum to this article can be found at  相似文献   

6.
The monthly deposition of total nitrogen, phosphorus, potassium, calcium and magnesium via canopy throughfall, and various components of the litterfall was measured for 31 months under mature Quercus douglasii and in the bulk precipitation in the surrounding open grassland. Seasonal patterns of nutrient concentration in leaf litter, throughfall, and precipitation were also measured. Total annual subcanopy deposition exceeded open precipitation deposition by approximately 45–60x for nitrogen, 5–15x for phosphorus, 30–35x for potassium, 25–35x for calcium, and 5–10x for magnesium. Total annual subcanopy deposition was low in comparison to other oak woodland sites reported in the literature. Throughfall and leaf litter were the primary sources of nutrients and thus determined the seasonal peaks of nutrient deposition. The first autumn rains and leaf fall were associated with one peak in nutrient deposition, and throughfall during early spring leaf emergence was associated with a second peak in potassium, magnesium and phosphorus. Non-leaf plant litter (excluding acorns) provided approximately 15–35% of most nutrients, with twigs and bark depositing over 12% of the annual calcium flux in 1987–1988, and flower litter depositing over 8% of the annual nitrogen flux in 1986–1987. Acorns had high concentrations of phosphorus and nitrogen and during the mast season of 1987–1988 they contained a large proportion of the total subcanopy annual flux of these elements. With acorns excluded, total annual nutrient deposition was similar between years, but timing of nutrient deposition differed. Late summer leaf fall associated with drought, variation in precipitation, and variation in deposition of non-leaf parts were associated with seasonal differences in nutrient deposition between years.  相似文献   

7.
王国华  陈蕴琳  缑倩倩 《生态学报》2021,41(14):5658-5668
通过调查分析河西走廊荒漠绿洲过渡带不同种植年限(5、10、20、30和40a)人工梭梭生理生化变化(叶片渗透调节物质、丙二醛和叶绿素含量,根系活力)和个体形态特征(叶片、枝条和茎干生物量、枯枝落叶比、株高、冠幅等)以揭示不同种植年限雨养梭梭对土壤水分变化的响应机制。研究结果表明:随着梭梭种植年限增加,人工梭梭林内深层100-120cm和180-200cm土壤水分变化明显,在5-20a保持在3%-4%,而在种植后期(30-40a)土壤水分下降到1%-2%左右。在5-20a,梭梭主要通过显著提高叶片渗透调节物质可溶性糖和可溶性蛋白含量,维持叶片较低的丙二醛含量和较高的叶绿素含量,保持新叶光合能力;同时,显著提高0-20cm根系的活力,增强对表层土壤水分的吸收能力;但在30-40a,梭梭叶片渗透调节物质明显减少,梭梭叶片丙二醛含量增加,叶绿素含量下降,同时叶绿素a,b比例失调,渗透调节作用失效,梭梭叶片老化,老叶比例明显增加,光合作用能力下降,枝条和茎干退化严重,个体生物量进一步减少,在40a梭梭叶片、枝条和茎干生物量下降到最低值。研究表明在年降水100mm左右的荒漠绿洲过渡带,在种植梭梭5-20a土壤水分为3%-4%,梭梭可以通过生理调节适应土壤干燥,但是从30a土壤水分下降到1%-2%时,梭梭主要通过枯枝落叶降低个体蒸腾耗水量,在40a梭梭进入休眠(假死)状态,这暗示土壤水分下降到1%-2%,可能是梭梭的临界吸收土壤水分。  相似文献   

8.
Aboveground net primary production (ANPP) dynamics are a key element in the understanding of ecosystem processes. For semiarid environments, the pulse-reserve framework links ANPP to variable and unpredictable precipitation events contingent on surficial hydrology, soil moisture dynamics, biodiversity structure, trophic dynamics, and landscape context. Consequently, ANPP may be decoupled periodically from processes such as decomposition and may be subjected to complex feedbacks and thresholds at broader scales. As currently formulated, the pulse-reserve framework may not encompass the breadth of ANPP response to seasonal patterns of precipitation and heat inputs. Accordingly, we examined a 6-year (1999–2004), seasonal record of ANPP with respect to precipitation, soil moisture dynamics, and functional groups in a black grama (Bouteloua eriopoda) grassland and a creosotebush (Larrea tridentata) shrubland in the northern Chihuahuan Desert. Annual ANPP was similar in the grassland (51.1 g/m2) and shrubland (59.2 g/m2) and positively correlated with annual precipitation. ANPP differed among communities with respect to life forms and functional groups and responses to abiotic drivers. In keeping with the pulse-reserve model, ANPP in black grama grassland was dominated by warm-season C4 grasses and subshrubs that responded to large, transient summer storms and associated soil moisture in the upper 30 cm. In contrast, ANPP in creosotebush shrubland occasionally responded to summer moisture, but the predominant pattern was slower, non-pulsed growth of cool-season C3 shrubs during spring, in response to winter soil moisture accumulation and the breaking of cold dormancy. Overall, production in this Chihuahuan Desert ecosystem reflected a mix of warm-temperate arid land pulse dynamics during the summer monsoon and non-pulsed dynamics in spring driven by winter soil moisture accumulation similar to that of cool-temperate regions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
This paper discusses the transition from heather-dominated vegetation to one dominated by grass. The dominating species involved are Calluna vulgaris and Deschampsia flexuosa. The study covered three years, 1980–82, and was done at the Hoorneboeg heathland in the Netherlands. Several factors account for this transition: damage caused by the chrysomelid heather beetle Lochmaea suturalis Thomson, soil type, and interaction between beetle damage and Deschampsia when already present underneath or in the immediate vicinity of a Calluna canopy. There was a time-lag between beetle damage and grass establishment or expansion. In fact, this transition concerns a type of vegetation succession and can be treated as such. This succession therefore involves several causative factors external to the system Calluna-Deschampsia. The successional process is conceived as a stochastic one defined by transition probabilities which depend on a time component, a space component and a logistic response component. All these components are discussed in this paper, but the discussion of yet another component, the crowding of Deschampsia itself, will be treated separately.  相似文献   

10.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

11.
We tested if subalpine heath vegetation in northern Italy recovered after experimental perturbation of soil nutrient availability (fertilization) and species composition (removal of co-dominant dwarf shrubs). Species cover was assessed non-destructively before the start of the treatments (1995), at the end of the treatments (1999) and 4 years after the treatments ended (2003). Shrub removal had rather modest effects on heath vegetation, except for mosses which decreased significantly in removal plots. Fertilization decreased the cover of shrubs, mosses, and some graminoids but increased the cover of Festuca rubra. Fertilization converted heath to grassland, but the response of graminoid species was individualistic. Fertilization decreased vascular species richness and evenness, probably through negative effects of shading and litter accumulation on plant growth or recruitment. The vegetation had not recovered completely 4 years after the perturbations had stopped. This suggests that, in contrast to rapid responses to species removal and fertilization, recovery from these perturbations was rather slow, presumably because recovery was affected by long-term biotic interactions and species controls on ecosystem properties.  相似文献   

12.
Water use patterns of four co-occurring chaparral shrubs   总被引:9,自引:0,他引:9  
Summary Mixed stands of chaparral in California usually contain several species of shrubs growing close to each other so that aerial branches and subterranean roots overlap. There is some evidence that roots are stratified relative to depth. It may be that root stratification promotes sharing of soil moisture resources. We examined this possibility by comparing seasonal water use patterns in a mixed stand of chaparral dominated by four species of shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a neutron probe and soil phychrometers to follow seasonal depletion and recharging of soil moisture and compared these patterns to seasonal patterns of predawn water potentials, diurnal leaf conductances, and diurnal leaf water potentials. Our results indicated that 1) Quercus was deeply rooted, having high water potentials and high leaf conductances throughout the summer drought period, 2) Heteromeles/Adenostoma were intermediate in rooting depth, water potentials, and leaf conductances, and 3) Rhamnus was shallow rooted, having the lowest water potentials and leaf conductances. During the peak of the drought, predawn water potentials for Quercus corresponded to soil water potentials at or below a depth of 2 m, predawn water potentials of Heteromeles/ Adenostoma corresponded to a depth of 0.75 m, and predawn water potentials of Rhamnus corresponded to a depth of 0.5 m. This study supports the concept that co-occurring shrubs of chaparral in California utilize a different base of soil moisture resources.  相似文献   

13.
Kennedy PG  Sousa WP 《Oecologia》2006,148(3):464-474
Competition and facilitation are both considered major factors affecting the structure of plant assemblages, yet few studies have quantified positive, negative, and net effects simultaneously. In this study, we investigated the positive, negative, and net effects of tree saplings on the encroachment of two tree species, Douglas fir (Pseudotsuga menziesii) and tanoak (Lithocarpus densiflora), into a coastal California grassland. The study involved three components: sampling the spatial distributions of P. menziesii and L. densiflora in the grasslands, a field experiment examining seedling survival in different grassland environments, and a greenhouse experiment examining the effects of soil moisture on early seedling performance. The field experiment was conducted over a 2-year period, using Pseudotsuga in 2002 and both species in 2003. Seedlings were separated into four treatment groups: those planted in open grassland, in shaded grassland, under artificial (plastic) conifer saplings, and under natural Pseudotsuga saplings. Air temperature, relative humidity, soil moisture, incident radiation levels and fog water inputs were measured for each treatment group in 2003. In the greenhouse experiment, Pseudotsuga and Lithocarpus seedlings were grown for 13 weeks in watering treatments simulating the summer soil moisture conditions of the open grasslands and under Pseudotsuga saplings. Surveys of naturally established seedlings found that Lithocarpus occurred only under Pseudotsuga saplings, while most Pseudotsuga seedlings were located near but not directly under conspecific saplings. In the field experiment, positive effects of tree saplings were much larger than negative effects, resulting in strong net facilitation of seedling establishment. Survival for both species was always higher under the plastic and live trees than in the open or shade plots. The primary mechanism facilitating seedling survival appeared to be increased soil moisture caused by input of fog precipitation coupled with reduced microsite evaporation. The greenhouse experiment further showed that soil moisture strongly affected seedling performance, with both species having much higher photosynthetic rates in the higher moisture treatment. In the lower moisture treatment, Pseudotsuga seedlings had higher photosynthetic rates and stomatal conductance than Lithocarpus, suggesting they may be able to better tolerate the environmental conditions found in the open grasslands. Our combined results suggest that rate and patterning of woody plant encroachment can be strongly influenced by facilitation and that fog precipitation may play a key role in plant interactions.  相似文献   

14.
Soil moisture affects microbial decay of SOM and rhizosphere respiration (RR) in temperate forest soils, but isolating the response of soil respiration (SR) to summer drought and subsequent wetting is difficult because moisture changes are often confounded with temperature variation. We distinguished between temperature and moisture effects by simulation of prolonged soil droughts in a mixed deciduous forest at the Harvard Forest, Massachusetts. Roofs constructed over triplicate 5 × 5 m2 plots excluded throughfall water during the summers of 2001 (168 mm) and 2002 (344 mm), while adjacent control plots received ambient throughfall and the same natural temperature regime. In 2003, throughfall was not excluded to assess the response of SR under natural weather conditions after two prolonged summer droughts. Throughfall exclusion significantly decreased mean SR rate by 53 mg C m?2 h?1 over 84 days in 2001, and by 68 mg C m?2 h?1 over 126 days in 2002, representing 10–30% of annual SR in this forest and 35–75% of annual net ecosystem exchange (NEE) of C. The differences in SR were best explained by differences in gravimetric water content in the Oi horizon (r2=0.69) and the Oe/Oa horizon (r2=0.60). Volumetric water content of the A horizon was not significantly affected by throughfall exclusion. The radiocarbon signature of soil CO2 efflux and of CO2 respired during incubations of O horizon, A horizon and living roots allowed partitioning of SR into contributions from young C substrate (including RR) and from decomposition of older SOM. RR (root respiration and microbial respiration of young substrates in the rhizosphere) made up 43–71% of the total C respired in the control plots and 41–80% in the exclusion plots, and tended to increase with drought. An exception to this trend was an interesting increase in CO2 efflux of radiocarbon‐rich substrates during a period of abundant growth of mushrooms. Our results suggest that prolonged summer droughts decrease primarily heterotrophic respiration in the O horizon, which could cause increases in the storage of soil organic carbon in this forest. However, the C stored during two summers of simulated drought was only partly released as increased respiration during the following summer of natural throughfall. We do not know if this soil C sink during drought is transient or long lasting. In any case, differential decomposition of the O horizon caused by interannual variation of precipitation probably contributes significantly to observed interannual variation of NEE in temperate forests.  相似文献   

15.
白刺沙堆退化与土壤水分的关系   总被引:1,自引:0,他引:1  
近几十年来,我国西北干旱区白刺沙堆退化严重,导致固定沙丘活化,流沙掩埋绿洲,造成了严重危害。如何尽可能长期保持白刺沙堆的稳定、防止白刺沙堆活化成为绿洲保护和沙漠化防治急需解决的问题。在多年野外观察的基础上,提出了"土壤水分收支不平衡所导致的土壤水分减少是白刺沙堆退化的主要原因"的研究假设。但是,由于缺少长期的野外观测试验,这个假设一直未被很好地证明。为了证明这个假设,在甘肃民勤的绿洲外围选择了雏形、发育、稳定和死亡四个退化阶段的白刺沙堆,于2008年1月至2012年6月利用中子水分仪和土壤烘干称重法对土壤水分进行了长期观测。结果表明:各样地的土壤含水量均呈现出2008年最大,2009年和2011年次之,2010年最小的趋势。年内变化是春季土壤含水量最低,夏季逐渐增加,随后逐渐减小。在不同发育阶段,雏形阶段的土壤含水量最大,且降水容易下渗。稳定和死亡阶段的白刺沙堆土壤含水量很低,降水难以下渗,只有大的降水事件发生时,水分才可以下渗。因此,稳定和死亡阶段白刺沙堆的土壤水分经常在植物的凋萎点之下,是造成白刺沙堆退化重要原因。证明了"土壤水分减少是白刺沙堆退化的原因"的研究假设。研究结果对今后的植物固沙实践活动会有积极的参考意义。  相似文献   

16.
Ultrasonic acoustic emissions were measured in Quercus ilex trees of a Mediterranean forest in Catalonia (NE Spain) each season from summer of 2004 to autumn of 2005. Acoustic emissions were maximum during hot and dry summer periods. Acoustic emissions started below 17% soil moisture, 0.85 RWC, and 2.5 MPa leaf water potential. They were negatively correlated with soil moisture and leaf water potential. The relationship between acoustic emissions and leaf water potential was the strongest, indicating that xylem tension is the most important factor inducing both cavitation (acoustic emissions) and a decrease in leaf water potential. Future increase of xylem cavitation derived from climate change may result in growth and survival limitations for this species in the drier southern limits of its current distribution.  相似文献   

17.
In anticipation of more severe summer droughts, forestry in temperate Europe is searching for drought-resistant ecotypes of native tree species that might maintain ecosystem services in the future. We investigated how spring precipitation and soil conditions interact with summer drought and affect the establishment of conifer seedlings from different climatic origin. Emergence, establishment and subsequent performance of seedlings originating from autochthonous, Central Alpine, continental Eastern European, and Mediterranean Pinus sylvestris and Picea abies populations were studied in the dry Alpine Rhine valley, Switzerland, at three sites with differing soil water holding capacities and in 3 years with contrasting weather conditions. In addition to this natural inter-annual variation, precipitation was manipulated within sites with throughfall reduction roofs. Seedling establishment and growth were principally affected by the spring weather in the year of emergence. In years with average to positive spring water balance, seedlings grown at the site with the highest water holding capacity had 2–5 times more aboveground biomass than seedlings grown at sites with less favourable soils. Effects of seed origin were marginal and only detectable at the drier sites: contrary to our expectations, seedlings from the Central Alpine Rhone valley, where the climatic spring water deficit is large, outperformed those from the Mediterranean. Consequently, plantation of non-native populations from dryer origin will mitigate the effects of increased summer drought at driest sites only, while the inter-annual variability of spring precipitation will continue to enable temperate conifers to regenerate on a wide range of forest soils independent of seed origin.  相似文献   

18.
Regional climate modeling is a technique for simulating high-resolution physical processes in the atmosphere, soil and vegetation. It can be used to evaluate wildfire potential by either providing meteorological conditions for computation of fire indices or predicting soil moisture as a direct measure of fire potential. This study examines these roles using a regional climate model (RCM) for the drought and wildfire events in 1988 in the northern United States. The National Center for Atmospheric Research regional climate model (RegCM) was used to conduct simulations of a summer month in each year from 1988 to 1995. The simulated precipitation and maximum surface air temperature were used to calculate the Keetch–Byram Drought Index (KBDI), which is a popular fire potential index. We found that the KBDI increased significantly under the simulated drought condition. The corresponding fire potential was upgraded from moderate for a normal year to high level for the drought year. High fire potential is often an indicator for occurrence of intense and extensive wildfires. Fire potential changed in the opposite direction for the 1993 flood event, indicating little possibility of severe wildfires. The soil moisture and KBDI evaluations under the drought and flood conditions are in agreement with satellite remotely sensed vegetation conditions and the actual wildfire activity. The precipitation anomaly was a more important contributor to the KBDI changes than temperature anomaly. The small magnitude of the simulated soil moisture anomalies during the drought event did not provide sufficient evidence for the role of simulated soil moisture as a direct measure of wildfire potential.  相似文献   

19.
Global climate models predict that in the next century precipitation in desert regions of the USA will increase, which is anticipated to affect biosphere/atmosphere exchanges of both CO2 and H2O. In a sotol grassland ecosystem in the Chihuahuan Desert at Big Bend National Park, we measured the response of leaf-level fluxes of CO2 and H2O 1 day before and up to 7 days after three supplemental precipitation pulses in the summer (June, July, and August 2004). In addition, the responses of leaf, soil, and ecosystem fluxes of CO2 and H2O to these precipitation pulses were also evaluated in September, 1 month after the final seasonal supplemental watering event. We found that plant carbon fixation responded positively to supplemental precipitation throughout the summer. Both shrubs and grasses in watered plots had increased rates of photosynthesis following pulses in June and July. In September, only grasses in watered plots had higher rates of photosynthesis than plants in the control plots. Soil respiration decreased in supplementally watered plots at the end of the summer. Due to these increased rates of photosynthesis in grasses and decreased rates of daytime soil respiration, watered ecosystems were a sink for carbon in September, assimilating on average 31 mmol CO2 m−2 s−1 ground area day−1. As a result of a 25% increase in summer precipitation, watered plots fixed eightfold more CO2 during a 24-h period than control plots. In June and July, there were greater rates of transpiration for both grasses and shrubs in the watered plots. In September, similar rates of transpiration and soil water evaporation led to no observed treatment differences in ecosystem evapotranspiration, even though grasses transpired significantly more than shrubs. In summary, greater amounts of summer precipitation may lead to short-term increased carbon uptake by this sotol grassland ecosystem.  相似文献   

20.
In water-limited environments of the intermountain region of North America, summer precipitation may play a role in the structure and function of aridland communities and ecosystems. This study examined the potential reliance on summer precipitation of two widespread, coexisting woody species in the southwestern United States, Pinus edulis Englmn. (Colorado piñon) and Juniperus osteosperma (Torr) Little (Utah juniper). The current distributions of P. edulis and J. osteosperma are highly suggestive of different dependencies on summer rainfall. We hypothesized that P. edulis was dependent on summer precipitation, utilizing summer precipitation even during extremely dry summers, whereas J. osteosperma was not dependent, using summer precipitation only when amounts were above some minimum threshold. Using sap flux and stable isotopic methods to assess seasonal water sources and water use efficiency, we examined the response of these two species to seasonal variations in moisture at a site located near the northern limits of the North American monsoon. Both sap flux and isotopic results indicated that P. edulis was responsive to summer rain, while J. osteosperma was not. Following summer rain events, sap flux density increased in P. edulis for several days, but not in J. osteosperma. Isotopic evidence indicated that P. edulis took up summer-derived moisture to a greater extent than J. osteosperma. Values of the natural abundance stable isotope ratio of carbon of leaf soluble carbohydrates increased over the summer for P. edulis, indicative of assimilation at higher water use efficiency, but were invariant for J. osteosperma. Our results supported the hypothesis that P. edulis and J. osteosperma are differentially sensitive to summer precipitation and are discussed in the light of potential changes in the seasonality of precipitation associated with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号