首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular mechanisms underlying the peculiar spectral properties of the carotenoid astaxanthin in alpha-crustacyanin, the blue carotenoprotein isolated from the exoskeleton of the lobster Homarus gammarus, were investigated by comparing the basic electrooptical parameters of astaxanthin free in vitro with those of astaxanthin in the complex. Absorption and electroabsorption (Stark effect) spectra were obtained for alpha-crustacyanin in low-temperature glasses to provide information about the molecular interactions that lead to the large bathochromic shift of the spectra resulting from this complexation. The low-temperature spectra reveal the presence of at least three spectral forms of alpha-crustacyanin, with vibronic (0-0) transitions at 14000 cm(-1), 13500 cm(-1) and 11600 cm(-1) (corresponding to approximately 630, 660 and 780 nm, respectively, at room temperature) and with relative aboundance 85%, 10% and 5%. The longer wavelength absorbing species have not previously been detected. The changes in polarizability and in permanent dipole moments associated with the S0-->S2 electronic transition for all these forms are about 1.5 times larger than for isolated astaxanthin. The results are discussed with reference to the symmetric polarization model for astaxanthin in alpha-crustacyanin.  相似文献   

2.
The complete sequence has been determined for the C1 subunit of crustacyanin, an astaxanthin-binding protein from the carapace of the lobster Homarus gammarus (L.). The polypeptide, 181 residues long, is similar (38% identity) to the other main subunit, A2 and to plasma retinol-binding protein. The tertiary structure of the C1 subunit has been modelled on that derived for the A2 subunit from the coordinates of retinol-binding protein. Residues lining the putative binding cavities and at the putative carotenoid binding sites of the two subunits are highly conserved. The carotenoid environments are characterized by a preponderance of aromatic and polar residues and the absence of charged side-chains. A tentative model for the dimer, beta-crustacyanin, formed between the two subunits with their associated carotenoid ligands, is discussed. The model is based on the crystal structure of the dimer of bilin-binding protein, a member of the same superfamily. This structure has enabled us to examine mechanisms for the bathochromic spectral shift of the protein-bound carotenoid and to identify likely contact regions between dimers in octameric alpha-crustacyanin.  相似文献   

3.
Resonance Raman spectroscopy and quantum chemical calculations were used to investigate the molecular origin of the large redshift assumed by the electronic absorption spectrum of astaxanthin in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. Resonance Raman spectra of alpha-crustacyanin reconstituted with specifically 13C-labeled astaxanthins at the positions 15, 15,15', 14,14', 13,13', 12,12', or 20,20' were recorded. This approach enabled us to obtain information about the effect of the ligand-protein interactions on the geometry of the astaxanthin chromophore in the ground electronic state. The magnitude of the downshifts of the C==C stretching modes for each labeled compound indicate that the main perturbation on the central part of the polyene chain is not homogeneous. In addition, changes in the 1250-1400 cm(-1) spectral range indicate that the geometry of the astaxanthin polyene chain is moderately changed upon binding to the protein. Semiempirical quantum chemical modeling studies (Austin method 1) show that the geometry change cannot be solely responsible for the bathochromic shift from 480 to 632 nm of protein-bound astaxanthin. The calculations are consistent with a polarization mechanism that involves the protonation or another interaction with a positive ionic species of comparable magnitude with both ketofunctionalities of the astaxanthin-chromophore and support the changes observed in the resonance Raman and visible absorption spectra. The results are in good agreement with the conclusions that were drawn on the basis of a study of the charge densities in the chromophore in alpha-crustacyanin by solid-state NMR spectroscopy. From the results the dramatic bathochromic shift can be explained not only from a change in the ground electronic state conformation but also from an interaction in the excited electronic state that significantly decreases the energy of the pi-antibonding C==O orbitals and the HOMO-LUMO gap.  相似文献   

4.
Low-angle neutron scattering from chromatin subunit particles.   总被引:22,自引:12,他引:10       下载免费PDF全文
Monomer chromatin particles containing 140 base pairs of DNA and eight histone molecules have been studied by neutron scattering. From measurements in various H2O/D2O mixtures, radii of gyration and the average scattering density of the particle were determined. The radius of gyration under conditions when scattering from the DNA dominates is 50A, and when scattering from the protein dominates, 30A. Consequently the core of the particle is largely occupied by the histones while the outer shell consists of DNA together with some of the histone.  相似文献   

5.
One of the primary problems in membrane‐based protein separation is membrane fouling. In this study we explored the feasibility of employing Rayleigh light scattering data from fluorescence studies combined with chemometric techniques to determine whether a correlation could be established with membrane fouling phenomena. Membrane flux was measured in a dead‐end UF filtration system and the effect of protein solution properties on the flux decline was systematically investigated. A variety of proteins were used as a test case in this study. In parallel, the colloidal behavior of the protein solutions was assessed by employing multiwavelength Rayleigh scattering measurements. To assess the usefulness of Rayleigh scattering measurements for probing the colloidal behavior of proteins, a protein solution of β‐lactoglobulin was used as a base‐case scenario. The colloidal behavior of different β‐lactoglobulin solutions was inferred based on published data for this protein, under identical solution conditions, where techniques other than Rayleigh scattering had been used. Using this approach, good agreement was observed between scattering data and the colloidal behavior of this protein. To test the hypothesis that a high degree of aggregation will lead to increased membrane fouling, filtration data was used to find whether the Rayleigh scattering intensity correlated with permeate flux changes. It was found that for protein solutions which were stable and did not aggregate, fouling was reduced and these solutions exhibited reduced Rayleigh scattering. When the aggregation behavior of the solution was favored, significant flux declines occurred and were highly correlated with increased Rayleigh scattering. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
We have used anomalous small-angle x-ray scattering as a structural probe for solutions of rabbit parvalbumin labeled with terbium. This technique makes use of the large changes in the terbium scattering factor that occur when the x-ray energy is tuned around an L3 absorption edge of this heavy-atom label. These changes in scattering result in changes in the small-angle scattering curve of the labeled protein as a whole, which can then be analyzed to derive structural information concerning the distribution of labels in the protein. Based on a Gaussian model for the protein electron density, the mean distance from the terbiums to the protein center of mass is determined to be 13.2 A and is consistent with crystallographic results. Our results demonstrate the usefulness of terbium as an anomalous scattering label and provide criteria to help establish anomalous scattering as a reliable structural technique for proteins in solution.  相似文献   

7.
Physical characteristics of ribosomal protein S4 from Escherichia coli   总被引:1,自引:0,他引:1  
A hydrodynamic study of protein S4 from Escherichia coli 30 S ribosomal subunits indicates that this protein is moderately asymmetric. A sedimentation coefficient of 1.69 S and a diffusion coefficient of 7.58 X 10(-7) cm2/s suggest that S4 has an axial ratio of about 5:1 using a prolate ellipsoidal model. This structure should give a radius of gyration of about 29-30 A from small-angle neutron or small-angle x-ray scattering studies. This study has utilized quasi-elastic light scattering as an analytical tool to obtain a diffusion coefficient as well as a method to monitor sample quality. Using quasi-elastic light scattering in this manner allows an assessment of problems associated with protein purity which may be responsible for the many disparate results reported for ribosomal proteins and especially protein S4.  相似文献   

8.
Blue oxygen binding protein hemocyanin from scorpion Buthus sindicus has been investigated using low resolution techniques. The native protein is a polymer of eight different types of subunits arranged in four cubic hexameric form (4x6-mers) as previously annotated using a combination of various types of chromatographic and electrophoretic techniques. In addition, both "top face" as well as the "side view" of the native assembly has also been identified from the negatively stained specimens using transmission electron microscopy confirming the overall structural features of arthropodan hemocyanins. These results are also supported from data obtained from another low resolution technique i.e. Small Angle X-ray scattering (SAXS). SAXS results under oxygenated and deoxygenated states represent a validation case for this technique with key conformational changes of Rg 88.0 --> 86.0 A; +/- 1% (Dmax 280.0 --> 290.0 A; +/- 2%), respectively suggesting that the oxygenated hemocyanin is longer then the deoxygenated hemocyanin by almost 2 A;. Likewise, active conformations of the purified structural and functional subunit Bsin1 under oxygenated and deoxygenated states also determined by SAXS measurements revealed a Rg value of 25.2 --> 25.7 A; +/- 1% (Dmax 75.0 --> 75.5 A; +/- 2%), respectively suggesting very little or no contribution of the individual subunit in the overall conformational change in the native assembly during molecular breathing. Preliminary molecular shapes for the oxy-molecules, calculated directly from the scattering profile-alone in a model-independent procedure, superimpose well on other closely related known three-dimensional structures of the same size. Structural and functional aspects of the native as well as purified subunit and the application of these low resolution techniques like transmission electron microscopy and Small Angle X-ray scattering have been discussed.  相似文献   

9.
Understanding protein folding requires the determination of the configurational space accessible to the protein at different stages in folding. Here, computer simulation analysis of small angle neutron scattering results is used to probe the change in the distribution of configurations on strong denaturation of a globular protein, phosphoglycerate kinase, in 4 M guanidine hydrochloride solution. To do this atomic-detail ensembles of the unfolded protein chain are modeled and their scattering profiles compared with the experiment. The local conformational statistics are found to strongly influence the experimental intensity at scattering vectors between 0.05 and 0.3 A(-1). Denaturation leads to a reduction in the protein atom-pair distance distribution function over the approximately 3-15 A region that is associated with a quantifiable shift in the backbone torsional angle (phi, psi) distribution toward the beta region of the Ramachandran plot.  相似文献   

10.
Intensities of x-ray scattering from a series of fragmented rabbit muscle sarcoplasmic reticulum (SR) samples have been measured over the range x = 0.05 to s = 0.25. By varying the relative concentrations of lipid and protein (chiefly the Mg++-dependent, Ca++- stimulated ATPase) in the membranes of this series, and by employing methods of analysis appropriate to the scattering from binary liquid mixtures, we have identified the separable contributions of protein and lipid, and the protein-lipid interaction contributions to the total scattering profiles. The shape of the protein term is consistent with scattering from a cylindrical ATPase particle 142 A in length and 35 A in diameter. These data imply that the dominant ATPase species is monomeric. The protein-lipid interaction term has been analyzed by a novel treatment based on a determination of the pair correlation function between the electrons of the protein molecule with the electrons of the lipid bilayer in terms of the asymmetry of the transbilayer disposition of the protein. Applied to our results, the analysis indicates a fully asymmetric disposition of ATPase, in which one end of the molecule is contiguous with either the lumenal or cytoplasmic surface of the bilayer.  相似文献   

11.
12.
We have studied the solution structures of the multi-functional protein kinase A using small-angle X-ray and neutron scattering and have found a remarkable structural diversity in the different isoforms of this multi-subunit enzyme, in spite of its having high sequence homology and a common domain organization within its sequences. The available high-resolution crystal and NMR structural data for the protein kinase A components have aided in the interpretation of the solution scattering data and enabled us to develop models that bring insights into protein kinase A activation and targeting mechanisms, such as the opening and closing of the catalytic cleft to facilitate substrate binding or inhibition, respectively, and the role of sequence segments that join functional domains in the R subunit in providing a structurally flexible scaffold for interactions with the C subunit and A kinase-anchoring proteins (AKAPs).  相似文献   

13.
Lu Y  Jeffries CM  Trewhella J 《Biopolymers》2011,95(8):505-516
Small-angle X-ray and neutron scattering with contrast variation have made important contributions in advancing our understanding of muscle regulatory protein structures in the context of the dynamic molecular processes governing muscle action. The contributions of the scattering investigations have depended upon the results of key crystallographic, NMR, and electron microscopy experiments that have provided detailed structural information that has aided in the interpretation of the scattering data. This review will cover the advances made using small-angle scattering techniques, in combination with the results from these complementary techniques, in probing the structures of troponin and myosin binding protein C. A focus of the troponin work has been to understand the isoform differences between the skeletal and cardiac isoforms of this major calcium receptor in muscle. In the case of myosin binding protein C, significant data are accumulating, indicating that this protein may act to modulate the primary calcium signals from troponin, and interest in its biological role has grown because of linkages between gene mutations in the cardiac isoform and serious heart disease.  相似文献   

14.
15.
If solution scattering curves can be accurately predicted from structural models, measurements can provide useful tests of predictions of secondary and tertiary structure. We have developed a computational technique for the prediction and interpretation of x-ray scattering profiles of biomolecules in solution. The method employs a Monte Carlo procedure for the generation of length distribution functions and provides predictions to moderate resolution (~5 Å). In addition to facilitating the assignment and interpretation of features in a solution scattering profile, the method also allows the elucidation of the role of protein motion in shaping the final scattering curve. The effect of protein motion on a scattering profile is investigated by generating scattering curves from several consecutive 0.147 ps atomic coordinate frames from a molecular dynamics simulation of the motion of bovine pancreatic trypsin inhibitor (BPTI) [McCammon, J. A. & Karplus, M. (1980) Annu. Rev. Phys. Chem. 31 , 29–45]. The theoretical approach is applied to chicken egg white lysozyme and BPTI, and the overall features in the resulting theoretical scattering profiles match well with the experimental solution scattering curves recorded on film. It is apparent from this study that the scattering profile prediction technique in conjunction with other experimental methods may have value in testing ideas of conformational change based on crystallographic studies; investigations of this type would include a comparison of predicted scattering curves generated from a variety of crystallographic models with an actual scattering profile of the biomolecule in solution.  相似文献   

16.
17.
Protein interactions in undersaturated and supersaturated solutions were investigated using static and dynamic light scattering and small angle x-ray scattering. A morphodrom of lysozyme crystals determined at 35 degrees C and pH = 4.6 was used as a guideline in selecting the protein and precipitant concentrations. The osmotic second virial coefficient, B(22), was determined by static and dynamic light scattering. At low ionic strengths for which no crystals were formed, B(22) was positive indicating repulsive interactions between the protein molecules. Negative B(22) at higher ionic strengths corresponds to attractive interactions where crystallization becomes possible. At two extreme salt concentrations, small angle x-ray scattering data were collected and fitted with a statistical mechanical model based on Derjaguin-Landau-Verwey-Overbeek potential using Random Phase Approximation. This model accounted well for the small angle x-ray scattering data at undersaturated condition with constant potential parameters. At very high salt concentration corresponding to supersaturated solution this model seems to fail, possibly due to the presence of non-Derjaguin-Landau-Verwey-Overbeek hydration repulsion between the molecules.  相似文献   

18.
Inelastic neutron scattering spectroscopy is used to investigate dynamic changes in lysozyme powder at two different low D2O hydrations (0.07g D2O/g protein and 0.20 g D2O/g protein). In the higher hydration sample, the inelastic scattering between 0.8 and 4.0 cm-1 energy transfer is increased and the elastic scattering is decreased. The decreased elastic scattering suggests increased atomic amplitudes of motion and the increased 0.8 to 4.0 cm-1 scattering suggests increased motions in this frequency range. Comparison with normal mode models of lysozyme dynamics shows that the inelastic difference occurs in the frequency region predicted for the lowest frequency, largest amplitude, global modes of the molecular [M. Levitt, C. Sander and P.S. Stern, J. Mol. Biol. 181, 423 (1985). B. Brooks and M. Karplus, Proc. Natl. Acad. Sci (U.S.A) 82, 4995 (1985), R.E. Bruccoleri, M. Karplus and J.A. McCammon, Biopolymers 25 1767 (1986)]. Our results are consistent with a model in which an increased number of low frequency global modes are present in the higher hydrated sample.  相似文献   

19.
The acetylcholine receptor from the electric tissue of Torpedo californica is a large, integral membrane protein containing four different types of polypeptide chains. The structure of the purified receptor in detergent solution has previously been investigated by sedimentation analysis and gel filtration. Sedimentation analysis yielded a molecular weight of 250,000 for the protein moiety of the receptor monomer-detergent complex; hydrodynamic characteristics such as the Stokes radius, however, refer to the receptor-detergent complex. In this paper we report the results of our use of low-angle neutron scattering to investigate the shape of the receptor-detergent (Triton X-100 from Rohm & Haas Co., Philadelphia, Pa.) complex and separately of its protein and detergent moieties. By adjustment of the neutron-scattering density of the solvent with D2O to match that of one or the other of the moieties, its contribution to the scattering can be nearly, if not completely, eliminated. Neutron scattering from Triton X-100 micelles established that this detergent is contrast matched in approximately 18% D2O. Scattering measurements on the receptor-detergent complex in this solvent yielded a radius of gyration of the acetylcholine receptor monomer of 46 +/- 1A. The radius of gyration and molecular volume (305,000 A3) of the receptor are inconsistent with a compact spherical shape. These parameters are consistent with, for example, a prolate cylinder of dimensions (length x diameter) approximately 150 x approximately 50 A or an oblate cylinder, approximately 25 x approximately 130 A. More complex shapes are possible and in fact seem to be required to reconcile the present results with previous electron microscopic and x-ray analyses of receptor in membrane and with considerations of the function of the receptor in controlling ion permeability. The neutron-scattering data yield, in addition, an independent determination of the molecular weight of the receptor protein (240,000 +/- 40,000), the extent of Triton X-100 binding in the complex (approximately 0.4 g/g protein), and from the extended scattering curve, an approximation to the shape of the receptor-Triton X-100 complex, namely an oblate ellipsoid of axial ratio 1:4.  相似文献   

20.
Meinhold L  Smith JC 《Proteins》2007,66(4):941-953
Understanding X-ray crystallographic diffuse scattering is likely to improve our comprehension of equilibrium collective protein dynamics. Here, using molecular dynamics (MD) simulation, a detailed analysis is performed of the origins of diffuse scattering in crystalline Staphylococcal nuclease, for which the complete diffuse scattering pattern has been determined experimentally. The hydrogen-atom contribution and the scattering range over which the scattering can be considered to be a sum of solvent and protein scattering are determined. Two models of correlated protein motion are investigated by calculating the model-derived diffuse scattering and comparing with the scattering calculated directly from MD trajectories. In one model, previously used in diffuse scattering interpretation, the atomic displacement correlations decay isotropically with increasing separation. Model correlation lengths are obtained by refining the model scattering against the simulation-derived scattering pattern, and are found to be significantly different from those correlation lengths derived directly from the MD trajectories. Furthermore, the convergence between the model-derived and MD-derived scattering is poor. The second model, in which the displacement correlations are calculated from the principal components of the MD trajectories, is capable of fully reproducing the MD-derived diffuse scattering if the approximately 50% lowest-frequency modes are included. However, a small number ( approximately 10) of lowest-frequency and largest-amplitude modes dominates the diffuse scattering and thus the correlated protein motions. A detailed analysis of the principal components is performed. In particular, the effective free energy profile associated with each principle mode is analyzed and the eigenfrequency and damping coefficient computed using a model of Brownian dynamics. Those collective modes with effective frequencies below approximately 0.5 THz, including those that determine the diffuse scattering, are overdamped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号