首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this paper, a total of 30 azido compounds were optimised with the B3LYP method of density functional theory using six basis sets (3-21G, 6-31G, 6-31G*, 6-31G**, 6-31+G** and 6-311G*) and semi-empirical PM3 and AM1 methods. The molar volumes based on the isoelectron density contour were evaluated using a Monte Carlo integration scheme (model 1) and the integral equation formalism polarised continuum model (model 2). The densities were predicted subsequently. Excellent linear correlations were found between the results obtained with the two models, and different methods had little effect on the densities calculated using model 2. Quantitative relationships were established with the calculated and experimental densities of 25 azido compounds in the training set, and were used to predict the densities of five azido compounds in the testing set. The results obtained agree well with the experimental data, and model 2 gives a better result than model 1, with root mean square errors being 0.02 and 0.03 g cm? 3, respectively. Therefore, model 2 is a more reliable and convenient model to predict the densities of azido compounds. This approach is believed to be applicable to other kinds of compounds too.  相似文献   

2.
In the present work, the experimental and the theoretical vibrational spectra of trifluorothymine were investigated. The FT-IR (400-4000?cm(-1)) and μ-Raman spectra (100-4000?cm(-1)) of trifluorothymine in the solid phase were recorded. The geometric parameters (bond lengths and bond angles) and vibrational frequencies of the title molecule in the ground state were calculated using ab initio Hartree-Fock (HF) method and density functional theory (B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with results found in the literature. Vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of trifluorothymine was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H?O hydrogen bonds.  相似文献   

3.
W C Johnson 《Proteins》1999,35(3):307-312
We have developed an algorithm to analyze the circular dichroism of proteins for secondary structure. Its hallmark is tremendous flexibility in creating the basis set, and it also combines the ideas of many previous workers. We also present a new basis set containing the CD spectra of 22 proteins with secondary structures from high quality X-ray diffraction data. High flexibility is obtained by doing the analysis with a variable selection basis set of only eight proteins. Many variable selection basis sets fail to give a good analysis, but good analyses can be selected without any a priori knowledge by using the following criteria: (1) the sum of secondary structures should be close to 1.0, (2) no fraction of secondary structure should be less than -0.03, (3) the reconstructed CD spectrum should fit the original CD spectrum with only a small error, and (4) the fraction of alpha-helix should be similar to that obtained using all the proteins in the basis set. This algorithm gives a root mean square error for the predicted secondary structure for the proteins in the basis set of 3.3% for alpha-helix, 2.6% for 3(10)-helix, 4.2% for beta-strand, 4.2% for beta-turn, 2.7% for poly(L-proline) II type 3(1)-helix, and 5.1% for other structures when compared with the X-ray structure.  相似文献   

4.
S Edmondson  N Khan  J Shriver  J Zdunek  A Gr?slund 《Biochemistry》1991,30(47):11271-11279
A model of the structure of the 22 amino acid residue gastrointestinal peptide hormone motilin in 30% hexafluoro-2-propanol has been obtained by using distance constraints obtained from two-dimensional nuclear Overhauser enhancements. A set of initial structures have been generated by using the distance geometry program DIANA, and 10 of these structures have been refined by using restrained molecular dynamics (AMBER). The resulting structures are virtually indistinguishable in terms of constraint violations and energies and display less than 0.5-A root mean square deviations (RMSD) of the backbone atom positions from Tyr7 to Lys20. A comparison of back-calculated and experimental NOE intensities indicates that RMSD's are not the best indicators of the goodness of fit or of the precision with which the structure is defined. The structure was further refined by fitting the experimental NOE data using an iterative full relaxation matrix analysis. The mean error between the observed and calculated backbone NOE intensities for the final refined structure was 0.23 for the full length of the molecule, 0.18 for the region from Glu9 to Lys20, and 0.29 for the region from Phe1 to Gly8. R factors for the same regions were 0.27, 0.19, and 0.43, respectively. All of the NOE-determined structures consistently display an alpha-helix which extends from Glu9 to Lys20. Considerable lack of definition of structure exists at the amino and carboxyl ends of the molecule and also in the vicinity of Thr6-Tyr7-Gly8. A tendency to form a wide turn appears to exist over the sequence Pro3-Ile4-Phe5-Thr6, but the structure in this region is not well defined by the NOE data.  相似文献   

5.
The molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values and several thermodynamic parameters of 5-(2-Hydroxyphenyl)-4-(p-tolyl)-2,4-dihydro-1,2,4-triazole-3-thione in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6–31G(d), 6–31 + G(d,p) and LANL2DZ basis sets. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Also, calculated 1H chemical shift values compared with the experimental ones. The data of the title compound display significant molecular structure and IR, NMR analysis provide the basis for future design of efficient materials having the of 1,2,4-triazole core.  相似文献   

6.
This study deals with the identification of glutamic acid by means of quantum chemical approach. FT-IR, FT-Raman and UV–vis spectra were recorded in the region 4000–400, 4000–50 cm? 1 and 200–600 nm, respectively. CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p) calculations were performed to obtain the optimised molecular structures, vibrational frequencies and corresponding vibrational assignment, thermodynamic properties and natural bonding orbital (NBO) analysis. The results show that the obtained optimised geometric parameters (bond lengths, bond angles and bond dihedrals) and vibrational frequencies were found to be in good agreement with the experimental results. The calculations of the electronic spectra were compared with the experimental ones. Furthermore, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses and UV–vis spectral analysis were also performed to determine the energy band gaps and transition states. NBO analysis, calculated using density functional theory methods (CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p)), was induced to find inter-molecular atoms. 13C and 1H NMR isotropic chemical shifts were calculated and the assignments made were compared with the ChemDraw Ultra values.  相似文献   

7.
We describe here an energy based computer software suite for narrowing down the search space of tertiary structures of small globular proteins. The protocol comprises eight different computational modules that form an automated pipeline. It combines physics based potentials with biophysical filters to arrive at 10 plausible candidate structures starting from sequence and secondary structure information. The methodology has been validated here on 50 small globular proteins consisting of 2-3 helices and strands with known tertiary structures. For each of these proteins, a structure within 3-6 A RMSD (root mean square deviation) of the native has been obtained in the 10 lowest energy structures. The protocol has been web enabled and is accessible at http://www.scfbio-iitd.res.in/bhageerath.  相似文献   

8.
The Fourier transform infrared (FT-IR) spectrum of 6-chloro-8-thia-1,4-epoxybicyclo[4.3.0]non-2-ene has been recorded in the region 4000–525 cm? 1. The optimised geometry, frequency and intensity of the vibrational bands of the title compound have been calculated using the ab initio Hartree–Fock and the density functional theory method with 6-31G(d,p) and 6-311G(d,p) basis set levels. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectrum of the title compound were interpreted by means of potential energy distributions using VEDA 4 program.  相似文献   

9.
The absolute configurations of two precursors, that is, 1-(3',4'-dichlorophenyl)-propanol and 1-(3',4'-dichlorophenyl)-propanamine, of a potent 2-mercapto-imidazole CCR-2 receptor antagonist, JNJ-27553292, were determined using vibrational circular dichroism. As a consequence, the absolute configuration of the antagonist itself was also determined. The two precursor compounds were subjected to a thorough conformational analysis and rotational strengths were calculated at the B3LYP/cc-pVTZ level of theory. Based on these data, vibrational circular dichroism spectra were simulated, which in turn were compared with experimental spectra. Agreement between the spectra allowed the assignment of the absolute configuration, which is in agreement with the proposed configuration based on stereospecific reactions on similar compounds.  相似文献   

10.
The triazole compound, 5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one, has been synthesized and characterized by 1H-NMR, 13C-NMR, IR, and X-ray single-crystal determination. The compound crystallizes in the monoclinic space group P21 with a?=?11.8844(3) Å, b?=?17.5087(4) Å, c?=?17.3648(6) Å, β?=?99.990(2)? and Z?=?8. In addition to the molecular geometry from X-ray experiment, the molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO) 1H- and 13C-NMR chemical shift values of the title compound in the ground state have been calculated using the density functional method (B3LYP) with 6-31G(d,p) basis set. The calculated results show that the optimized geometries can well reproduce the crystal structure and the theoretical vibrational frequencies and chemical shift values show good agreement with experimental ones. Besides, molecular electrostatic potential (MEP), natural bond orbital (NBO), and frontier molecular orbitals (FMO) analysis of the title compound were performed by the B3LYP/6-31G(d,p) method.  相似文献   

11.
Aqueous solutions of pyridoxamine 5' phosphate (PMP) at several pH conditions have been studied using FT-IR spectroscopy using the attenuated total reflection (ATR) technique. In spite of the strong intense OH stretching and bending bands of water, most of the vibrational structure of solute can be observed from 900 to 1500 cm(-1). With increasing pH, very intense changes in the spectra have been observed due to concentration changes of the hydrogen bonded species. Spectra of the different ionic species have been calculated from the mathematical fitting of experimental absorption spectra as a function of pH. Spectra are characterized by the presence of broad band-like structures in the 2400-3500 cm(-1) region, with extended continua that indicate very large proton polarizability of hydrogen bonds. Contributions of the phosphate group to the total absorption have been analyzed by comparison with pyridoxamine spectra.  相似文献   

12.
The absolute configurations (AC) of natural occurring 6-hydroxyeuryopsin (1), of its acetyl derivative 2, and of eremophilanolide 8 were confirmed by comparison of the experimental vibrational circular dichroism (VCD) spectra with theoretical curves generated from density functional theory (DFT) calculations. Initial analyses were carried out using a Monte Carlo searching with the MMFF94 molecular mechanics force field. All MMFF94 conformers were further optimized using DFT at the B3LYP/6-31G(d) level of theory, followed by calculations of their vibrational frequencies at the B3LYP/6-31G(d,p); the VCD spectra of 2 and 8 were also calculated at the B3PW91/DGDZVP level of theory. Good agreement between theoretical and experimental VCD curves unambiguously verified the 4S,5R,6S absolute configuration for 1 and 2, and the 1S,4S,5R,6S,8S,10S configuration for 8.  相似文献   

13.
The conformation of the polypeptide thymosin beta 4 in solutions of 60% (v/v) trifluoroethanol-d3 and 50% (v/v) hexafluoroisopropyl-d2 alcohol in water is investigated by nuclear magnetic resonance (NMR) spectroscopy. Under these conditions thymosin beta 4 adopts an ordered structure. By use of a combination of two-dimensional NMR techniques, the 1H NMR spectrum of thymosin beta 4 is assigned. A set of 180 approximate interproton distance constraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 33 phi constraints obtained for JNH alpha coupling data and the 23 psi dihedral angles identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Ten independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 30 calculated structures satisfy the experimental constraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 30 converged structures indicates that there are two helical regions extending from residues 4-16 and from residues 30-40, which are well defined both in terms of atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 2 A. The two helices exhibit typical amino acid preferences for specific locations at the ends of helices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Raman spectra of neat pyrrole (C(4)H(5)N) and its binary mixtures with dichloromethane (CH(2)Cl(2), DCM) with varying mole fractions of C(4)H(5)N from 0.1 to 0.9 were recorded in order to monitor the influence of molecular interaction on spectral features of selected vibrational bands of pyrrole in the region 600-1600 cm(-1). Only 1369 cm(-1) vibrational band of pyrrole shows a significant change in its peak position in going from neat pyrrole to the complexes. The 1369 cm(-1) band shows (~6 cm(-1)) blue shift upon dilution and the corresponding linewidth shows the maximum shift at C?=?0.5 mole fraction of pyrrole upon dilution which clearly indicates that the concentration fluctuation model plays major role. Quantum chemical calculation using density functional theory (DFT) and ab-initio (MP2 and HF) methods were performed employing high level basis set, 6-311++G(d,p) to obtain the ground state geometry of neat pyrrole and its complexes with DCM in gas phase. Basis set superimpose error (BSSE) correction was also introduced by using the counterpoise method. In order to account for the solvent effect on vibrational features and changes in optimized structural parameters of pyrrole, polarizable continuum model (PCM) (bulk solvations) and PCM (specific plus bulk solvations) calculations were performed. Two possible configurations of pyrrole + DCM complex have been predicted by B3LYP and HF methods, whereas the MP2 method gave only single configuration in which H atom of DCM is bonded to π ring of the pyrrole molecule. This affects significantly the ring vibrations of pyrrole molecule, which was also observed in our experimental results.  相似文献   

15.
ABSTRACT

FT-IR and FT-Raman spectra of 2,2′-bipyridine-3,3′-dicarboxylic acid (B3DA), 2,2′-bipyridine-4,4′-dicarboxylic acid (B4DA) and 2,2′-bipyridine-5,5′-dicarboxylic acid (B5DA) were recorded and analysed. The quantum chemical calculations of the title compounds begin with barrier potentials at different rotation angles around the C–C′ and C–Cα bonds in order to arrive conformation of lowest energy using DFT employing B3LYP functional with 6-311++G(d,p) basis set. This confirmation was further optimised to get the global minimum geometry. The vibrational frequencies along with IR, Raman intensities were computed, the rms error between observed and calculated frequencies were 11.2 cm?1, 10.2 cm?1 and 12.2 cm?1 for B3DA, B4DA, and B5DA. An 87-element modified valence force field is derived by solving the inverse vibrational problem using Wilson’s GF matrix method. This force field is refined using 163 observed fundamentals employing in overlay least-squares technique. The average error between computed and experimental frequencies was found as 12.85 cm?1 using potential energy distribution (PED) and eigenvectors. By using the gauge-independent atomic orbital (GIAO) method calculate the 1H and 13C NMR chemical shifts of the molecules and compared with experimental results. The first-order hyperpolarisability, HOMO and LUMO energies, molecular electrostatic potential (MESP) and natural orbital analysis (NBO) of titled compounds were evaluated using DFT.  相似文献   

16.
The design of small molecule antagonists against Programmed Death Ligand-1 (PD-L1) has been the recent highlight of the immune checkpoint blockade therapy. This interventive approach has been potentiated by the development of BMS compounds; BMS-1001 and BMS-1166, which exert their therapeutic activities by inducing dimerisation of PD-L1; a molecular mechanism that has remained unclear. For the first time, we resolve the dynamical events that underlie the antagonistic mechanisms of BMS-1001 and BMS-1166 when bound to PD-L1 using an all-atom molecular dynamics (MD) simulations approach and free binding energy Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculations. Time-scale dynamical findings revealed that upon binding a PD-L1 monomer, the BMS-compounds gradually facilitated the ‘inbound’ motion of another PD-L1 monomer in the same conformational phase space up till dimer formation. Moreover, the non-liganded PD-L1 monomer exhibited the highest structural flexibility and atomistic motions relative to the BMS-liganded monomer as revealed by post-MD trajectory analyses using root mean square deviation (RMSD) and root mean square fluctuations (RMSF) parameters. Trajectory investigations into ligand motions also revealed that the BMS compounds exhibited mechanistic transitions from the monomeric binding site (monomer A) where they were initially bound, to the second monomeric site (monomer B) where they were strongly bound, followed by eventual high-affinity interactions at the tunnel-like binding cleft formed upon the dimerisation of both PD-L1 monomers. These findings present a model that describes the mechanism by which the BMS compounds induce PD-L1 dimerisation and could further enhance the design of highly selective and novel monomeric recruiters of PD-L1 in cancer immunotherapy.  相似文献   

17.
Abstract

Single-domain antibodies also known as nanobodies are recombinant antigen-binding domains that correspond to the heavy-chain variable region of camelid antibodies. Previous experimental studies showed that the nanobodies have stable and active structures at high temperatures. In this study, the thermal stability and dynamics of nanobodies have been studied by employing molecular dynamics simulation at different temperatures. Variations in root mean square deviation, native contacts, and solvent-accessible surface area of the nanobodies during the simulation were calculated to analyze the effect of different temperatures on the overall conformation of the nanobody. Then, the thermostability mechanism of this protein was studied through calculation of dynamic cross-correlation matrix, principal component analyses, native contact analyses, and root mean square fluctuation. Our results manifest that the side chain conformation of some residues in the complementarity-determining region 3 (CDR3) and also the interaction between α-helix region of CDR3 and framework2 play a critical role to stabilize the protein at a high temperature.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
We have developed and tested a new time-effective and accurate hybrid QM//MM generalized second-order vibrational perturbation theory (GVPT2) approach. In this approach, two different levels of theory were used, a high level one (DFT) for computing the harmonic spectrum and a lower fast one (Molecular Mechanic) for the anharmonic corrections. To validate our approach, we used B2PLYP/def2-TZVPP as the high-level method, and the MMFF94 method for the anharmonic corrections as the low-level method. The calculations were carried out on 28 molecules (containing from 2 to 47 atoms) covering a broad range of vibrational modes present in organic molecules. We find that this fast hybrid method reproduces the experimental frequencies with a very good accuracy for organic and bio-molecules. The root-mean-square deviation (RMSD) is about 27 cm -1 while the full B3LYP/SNSD simulation reproduces the experimental values with a RMSD of about 41 cm -1. Concerning the computational time, the hybrid B2PLYP//MMFF94 approach considerably outperforms the full B3LYP/SNSD: for the larger molecule of our set (a dipeptide containing 47 atoms), the anharmonic corrections are 2300 times faster using hybrid MMFF94 rather than full B3LYP, which represents an additional computation time to the harmonic calculation of merely 9 %, instead of 32100 % with the full B3LYP approach. This time-effective and accurate alternative to the traditional GVPT2 approach will allow the spectroscopy community to explore anharmonic effects in larger biomolecules, which are generally unaffordable.  相似文献   

19.
20.
Protein stability and function relies on residues being in their appropriate ionization states at physiological pH. In situ residue pK(a)s also provides a sensitive measure of the local protein environment. Multiconformation continuum electrostatics (MCCE) combines continuum electrostatics and molecular mechanics force fields in Monte Carlo sampling to simultaneously calculate side chain ionization and conformation. The response of protein to charges is incorporated both in the protein dielectric constant (epsilon(prot)) of four and by explicit conformational changes. The pK(a) of 166 residues in 12 proteins was determined. The root mean square error is 0.83 pH units, and >90% have errors of <1 pH units whereas only 3% have errors >2 pH units. Similar results are found with crystal and solution structures, showing that the method's explicit conformational sampling reduces sensitivity to the initial structure. The outcome also changes little with protein dielectric constant (epsilon(prot) 4-20). Multiconformation continuum electrostatics titrations show coupling of conformational flexibility and changes in ionization state. Examples are provided where ionizable side chain position (protein G), Asn orientation (lysozyme), His tautomer distribution (RNase A), and phosphate ion binding (RNase A and H) change with pH. Disallowing these motions changes the calculated pK(a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号