首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gorelick R 《Oecologia》2011,167(4):885-888
There is no single best index that can be used to answer all questions about species diversity. Entropy-based diversity indices, including Hill’s indices, cannot account for geographical and phylogenetic structure. While a single diversity index arises if we impose several constraints—most notably that gamma diversity be completely decomposed into alpha and beta diversity—there are many ecological questions regarding species diversity for which it is counterproductive, requiring decomposability. Non-decomposable components of gamma diversity may quantify important intrinsic ecological properties, such as resilience or nestedness.  相似文献   

2.
3.
Moreno CE  Rodríguez P 《Oecologia》2011,167(4):889-892
After decades of misusing the term diversity in community ecology, over the last 5 years some papers have offered important advances toward developing a more rigorous mathematical background, which allows us to achieve more clarity in the terminology for the vast range of biological phenomena that have been placed under the umbrella of this term. Some points have been clearly stated in previous papers of this Views and Comments section, and new terms have even been proposed for specific cases, but other issues, such as the need for the prefix true have not been discussed. Our aim is to clarify some of the terms and concepts, the proper use of which appears still to remain unclear, and to provide biologists with a simplified version of the general framework resulting from recent contributions, with an emphasis on identifying points of consensus in the field. We also comment on the possibility of extending the basics of this general framework to other facets of the broad term biodiversity, such as functional or phylogenetic diversity.  相似文献   

4.
There is a genuine need for consensus on a clear terminology in the study of species diversity given that the nature of the components of diversity is the subject of an ongoing debate and may be the key to understanding changes in ecosystem processes. A recent and thought-provoking paper (Jurasinski et al. Oecologia 159:15–26, 2009) draws attention to the lack of precision with which the terms alpha, beta, and gamma diversity are used and proposes three new terms in their place. While this valuable effort may improve our understanding of the different facets of species diversity, it still leaves us far from achieving a consistent terminology. As such, the conceptual contribution of these authors is limited and does little to elucidate the facets of species diversity. It is, however, a good starting point for an in-depth review of the available concepts and methods.  相似文献   

5.
Tuomisto H 《Oecologia》2010,164(4):853-860
The prevailing terminological confusion around the concept ‘diversity’ has hampered accurate communication and caused diversity issues to appear unnecessarily complicated. In fact, a consistent terminology for phenomena related to (species) diversity is already available. When this terminology is adhered to, diversity emerges as an easily understood concept. It is important to differentiate between diversity itself and a diversity index: an index of something is just a surrogate for the thing itself. The conceptual problem of defining diversity also has to be separated from the practical problem of deciding how to adequately quantify diversity for a community of interest. In practice, diversity can be quantified for any dataset where units of observation (such as individuals) have been classified into types (such as species). All that needs to be known is what proportion of the observed units belong to a type of mean abundance. Diversity equals the inverse of this mean, and it quantifies the effective number of the types of interest. In ecology, interest often (but not always) focuses on species diversity. If the dataset consists of (or gets divided into) subunits, then the total effective number of species (gamma diversity) can be partitioned into the effective number of compositionally distinct subunits (beta diversity) and the mean effective number of species per such subunit (alpha diversity). Species richness is related to species diversity, but they are not the same thing; richness does not take the proportional abundances into account and is therefore the actual—rather than the effective—number of types. Most of the phenomena that have been called ‘beta diversity’ in the past do not quantify an effective number of types, so they should be referred to by names other than ‘diversity’ (for example, species turnover or differentiation).  相似文献   

6.
There are currently unprecedented opportunities to treat rheumatoid arthritis using well-designed, highly effective, targeted therapies. This will result in a substantial improvement in the outcome of this disorder for most affected individuals, if they can afford these therapies. Yet our lack of understanding of the basic mechanisms that initiate and sustain this disease remains a major obstacle in the search for a definitive cure. It is possible, if not likely, that our best approach will be to identify individuals at risk and devise reliable, safe methods of preventing the disease before it occurs. The means to do this are currently unknown but should serve as a major focus of research.  相似文献   

7.
Aim  To integrate the effects of ecosystem engineers (organisms that create, maintain or destroy habitat for other species) sharing the same archetype on species diversity, and assess whether different engineer species have generalized or idiosyncratic effects across environmentally similar ecosystems.
Location  High-Andean habitats of Chile and Argentina, from 23° S to 41° S.
Methods  We measured and compared the effects of eight alpine plants with cushion growth-form on species richness, species diversity (measured as the Shannon–Wiener index) and evenness of vascular plant assemblages across four high-Andean ecosystems of Chile and Argentina.
Results  The presence of cushion plants always increased the species richness, diversity (measured as the Shannon–Wiener index) and evenness of high-Andean plant assemblages. However, while the presence of different cushion species within the same ecosystem controlled species diversity in the same way, these effects varied between cushion species from different ecosystems.
Main conclusions  Results consistently supported the idea that increases in habitat complexity due to the presence of ecosystem engineers, in this case cushion plants, would lead to higher community diversity. Results also indicate that effects of the presence of different cushion species within the same ecosystem could be generalized, while the effects of cushion species from different ecosystems should be considered idiosyncratic.  相似文献   

8.
European water frogs are characterized by anthropic introductions and Rana ridibunda may be considered as an invasive species. As such translocations may result in introgression of exotic genes in native populations, i.e. genetic pollution, we studied genetic characteristics (on 11 allozymic loci) of natural versus introduced water frogs. Our study contributed to (1) disclose 3 genetic markers allowing the identification of exotic frogs; (2) quantify the proportion of exotic frogs found in natural populations; and (3) suggest how genetic pollution may arise in these frogs.  相似文献   

9.
A shift from traditional engineering approaches to ecologically-based techniques will require changing societal values regarding ‘how and what’ is defined as engineering and design. Non-human species offer many ecological engineering examples that are often beneficial to ecosystem function and other biota. For example, organisms known as ‘ecosystem engineers’ build, modify, and destroy habitat in their quest for food and survival. Similarly, ‘keystone species’ have greater impacts on community or ecosystem function than would be predicted from their abundance. The capacity of these types of organisms to affect ecosystems is great. They exert controlling influences over ecosystems and communities by altering resource allocation, creating habitats and modifying relative competitive advantages.Species’ effects in ecosystems, although context-dependent, can be evaluated as ‘beneficial’ or ‘detrimental’. The evaluation depends on whether effects on other species or ecosystem function are more or less desirable from a given perspective. Organisms with beneficial impacts facilitate the presence of other species, employ efficient nutrient cycling, and are sometimes characterized by specific mutualisms. In contrast, many cases of detrimental engineering are found from introduced (i.e., exotic) species and are characterized by a loss of species richness, a lack of nutrient retention and the degradation of ecosystem integrity. Species’ impacts on ecosystems and community traits have been quantified in ecological studies and can be used similarly to understand, design and model human engineering structures and impacts on the landscape. Emulation of species with beneficial impacts on ecosystems can provide powerful guidance to the goals of ecological engineering. Using role model organisms that have desirable effects on species diversity and ecosystem function will be important in developing alternatives to traditional engineering practices.  相似文献   

10.
11.
Genome data have to be converted into knowledge to be useful to biologists. Many valuable computational tools have already been developed to help annotation of plant genome sequences, and these may be improved further, for example by identification of more gene regulatory elements. The lack of a standard computer-assisted annotation platform for eukaryotic genomes remains major bottle-neck.  相似文献   

12.
13.
The most ubiquitous and well recognized diversity pattern at large spatial scales is the latitudinal increase in species richness near the equator and decline towards the poles. Although several exceptions to this pattern have been documented, shallow water mollusks, the most specious group of marine invertebrates, are the epitome of the monotonic decline in species diversity toward higher latitudes along the Pacific and Atlantic coasts of North America. Here we analyze the geographic diversity of 629 mollusk species along the Pacific South American shelf. Our analyses are based on the most complete database of invertebrates assembled for this region of the world, consisting of latitudinal ranges of over 95% of all described mollusks between 10° and 55°S. Along this coast, mollusk diversity did not follow the typical latitudinal trend. The number of species remained constant and relatively low at intermediate latitudes and sharply increased toward higher latitudes, south of 42°S. This trend was explained by changes in shelf area, but not by sea surface temperature, unlike the pattern documented for Northern Hemisphere mollusks. Direct sampling of soft bottom communities along the gradient suggests that regional trends in species richness are produced by increased alpha diversity, and not only by artifacts produced by the increase in sampling area. We hypothesize that increased shelf area south of 42°S, geographic isolation produced by divergence of major oceanic currents, and the existence of refugia during glaciations, enabled species diversification. Radiation could have been limited by narrow continental shelves between 10°–42°. Asymmetries in latitudinal diversity trends between hemispheres show that there is not a single general factor determining large-scale diversity patterns.  相似文献   

14.
Species distribution models (SDMs) have become one of the major predictive tools in ecology. However, multiple methodological choices are required during the modelling process, some of which may have a large impact on forecasting results. In this context, virtual species, i.e. the use of simulations involving a fictitious species for which we have perfect knowledge of its occurrence–environment relationships and other relevant characteristics, have become increasingly popular to test SDMs. This approach provides for a simple virtual ecologist framework under which to test model properties, as well as the effects of the different methodological choices, and allows teasing out the effects of targeted factors with great certainty. This simplification is therefore very useful in setting up modelling standards and best practice principles. As a result, numerous virtual species studies have been published over the last decade. The topics covered include differences in performance between statistical models, effects of sample size, choice of threshold values, methods to generate pseudo‐absences for presence‐only data, among many others. These simulations have therefore already made a great contribution to setting best modelling practices in SDMs. Recent software developments have greatly facilitated the simulation of virtual species, with at least three different packages published to that effect. However, the simulation procedure has not been homogeneous, which introduces some subtleties in the interpretation of results, as well as differences across simulation packages. Here we 1) review the main contributions of the virtual species approach in the SDM literature; 2) compare the major virtual species simulation approaches and software packages; and 3) propose a set of recommendations for best simulation practices in future virtual species studies in the context of SDMs.  相似文献   

15.
16.
Recent empirical studies have found evidence of increased biomass production ('overyielding') in species mixtures relative to monoculture, but the interpretation of these results remains controversial, in part, because of the lack of a theoretical expectation. Here, we examined the expected frequency and stability of overyielding species mixtures using Lotka-Volterra models of species dynamics in two- and four-species systems in conjunction with community, population, and specific rate of biomass production (SRP) definitions of overyielding. Overyielding plant mixtures represented > 55% of potential species assemblages under community definitions and approximately 100% of species were either overyielding or underyielding under the population definition. Our species simulations approached their equilibria in 1-2 yr, supporting the relevancy of an equilibrial analysis. The range of parameter space that we explored produced realistic values of plot biomass, supporting their biological relevance. We show that overyielding is expected to be common under community definitions and population definitions. Overyielding, under community or population definitions, does not imply an actual increase in the specific rate of biomass production. In addition, assemblages of overyielding and underyielding species under all three definitions can be stable over time with underyielding species persisting in the presence of overyielding species.  相似文献   

17.
Plant Ecology - Species–habitat associations can be used as a proxy for species niches. Previous research has shown that niche plasticity may increase diversity in plant communities, and that...  相似文献   

18.
19.
The advent of the new millennium has witnessed the embracing of a different perspective on global health aid. New and innovative mechanisms in health-aid financing are leading to new opportunities, focused on greater innovation, risk taking and speed. However, these opportunities might not fully materialize if the traditional approaches of channeling and using funds are followed. To maximize global aid effectiveness and to have a realistic chance of achieving the Millennium Development Goals, the implementation of a holistic approach to the global architecture of health aid will be essential.  相似文献   

20.
Although the malaria parasite was discovered more than 120 years ago, it is only during the past 20 years, following the cloning of malaria genes, that we have been able to think rationally about vaccine design and development. Effective vaccines for malaria could interrupt the life cycle of the parasite at different stages in the human host or in the mosquito. The purpose of this review is to outline the challenges we face in developing a vaccine that will limit growth of the parasite during the stage within red blood cells--the stage responsible for all the symptoms and pathology of malaria. More than 15 vaccine trials have either been completed or are in progress, and many more are planned. Success in current trials could lead to a vaccine capable of saving more than 2 million lives per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号