首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Woody debris (CWD) is an important habitat component in northern Gulf of Mexico coastal plain streams, where low gradients and low flows allow accumulation of CWD and promote low dissolved oxygen (DO) concentrations. We tested the influences of CWD and DO on stream macroinvertebrates experimentally by placing two surface area CWD treatments each in three concentrations of ambient DO in two streams in Louisiana, USA, with macroinvertebrates collected from ambient woody debris used as a control. We also sampled macroinvertebrates in benthic and woody debris habitats in three streams twice yearly over 2 years to examine the applicability of the experimental results. Total abundance, richness (generic), and Shannon–Wiener diversity were all higher in lower DO conditions during the experiment, and total abundance was higher in the larger CWD treatment. Stream sampling corroborated the relationship between higher diversity and low DO in both benthic and woody debris habitats, but the relationship between richness and low DO only was supported in benthic habitats. Few taxa correlated with DO or CWD in the experiment (5 of 21 taxa) or stream survey (2 of 54 taxa). Whereas most taxa were uncorrelated with experimentally manipulated and in-stream measured variables, we suggest these taxa respond as generalists to stream habitat and physicochemistry. Based on this experiment and stream sampling, we believe the majority of macroinvertebrates in these streams are tolerant of seasonally low DO conditions.  相似文献   

2.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

3.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

4.
Rosenfeld  Jordan S. 《Hydrobiologia》1997,344(1-3):75-79
Studies of benthic invertebrates in lakes and streams suggest thatlarge-bodied herbivores are more efficient grazers than smallerones. In order to assess the effect of larger herbivores on smallergrazing invertebrates, the presence of dominant grazer taxa wasmanipulated in streamside troughs in a first order temperaterainforest stream in British Columbia. The presence of mayflies(Ameletus sp.) and tailed frog tadpoles (Ascaphustruei) reduced both algal biomass and the abundance of herbivorouschironomids (Orthocladiinae) on ceramic tiles. This confirms thatlarge mobile grazers in streams have a negative effect on smallersessile invertebrate grazers either through resource competition ordirect consumption (predation).  相似文献   

5.
Judy O. Wern 《Hydrobiologia》1998,379(1-3):135-145
The effects of acid (HNO3) on drift and survival of benthic invertebrate communities were assessed in stream microcosms over a 7-day exposure period. Communities were obtained from the Cache la Poudre River, Colorado, using artificial substrates colonized in the stream for 30 days and then transferred to stream microcosms. Streams receiving the highest acid concentration (pH 4.0) contained significantly fewer individuals ( F = 378.42, p < 0.0001) and taxa ( F = 7.8, p = 0.0123) at the end of the experiment compared to the other two treatments (pH 5.5, 6.5) and the control (pH 7.4). Reduced macroinvertebrate abundance resulted primarily from reduced abundance of mayflies (Ephemeroptera) which were particularly sensitive. Comparisons of Plecoptera, Trichoptera, and Diptera abundances showed no statistically significant differences among treatments. Analysis of invertebrate drift samples, collected after 2, 6, 18, and 42 h exposure, revealed that percent drift in the most acidic streams was nine times that of control streams. Ephemeroptera was the only aquatic insect order to exhibit a significant drift response, and timing and magnitude of responses varied among mayfly taxa. Differences in sensitivity to acid among aquatic insect orders observed in our experimental streams were similar to those reported from field studies in other regions. Effects of acid on drift and survival of benthic invertebrate communities were also similar to effects of heavy metals, one of the primary water quality concerns in the Rocky Mountain region. These results suggest a general pattern of responses to chemical stressors in benthic communities from Rocky Mountain streams. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
1. Macroinvertebrate communities were studied from 1994 to 2001/2002 (except 1997) in six streams in Denali National Park, interior Alaska. All six streams were potential reference streams with no known impairment. 2. Abundance of individual taxa varied markedly from year to year. Overall, abundance decreased over the study period, particularly with respect to mayflies. Stonefly taxa showed lower persistence and were sometimes absent from a stream in any particular year. 3. Mean community persistence for the six streams, as measured by Jaccard's similarity coefficients between years, varied from 0.48 in the year pair 1999–2000 to 0.78 in 1998–99. Tattler Creek (a small stable stream) supported the most persistent macroinvertebrate community and Highway Pass Creek (a small, unstable creek) the least. Mean community persistence showed a significant relationship with mean winter snowfall (November to March) for the six streams. 4. The highest community compositional stability was found in Tattler Creek and the lowest in Highway Pass Creek, but stability varied markedly over time for the six streams, peaking in 1994–95 and reaching a minimum in 2000–01. Compositional stability was significantly related to the Pfankuch Index of channel stability. 5. The composition metrics % Chironomidae, % dominant taxa, %EPT, % Ephemeroptera and % Plecoptera, employed as part of the Alaska Stream Condition Index, varied over almost their entire range in these pristine streams across the 9 years of the study. 6. This study demonstrates the wide range of natural variation that occurs in benthic macroinvertebrate communities in these pristine central Alaskan streams, potentially limiting the applicability of composition metrics for the biological monitoring of water quality in these systems.  相似文献   

7.
Benthic invertebrates, litter decomposition, andlitterbag invertebrates were examined in streamsdraining pine monoculture and undisturbed hardwoodcatchments at the Coweeta Hydrologic Laboratory in thesouthern Appalachian Mountains, USA. Bimonthlybenthic samples were collected from a stream draininga pine catchment at Coweeta during 1992, and comparedto previously collected (1989–1990) benthic data froma stream draining an adjacent hardwood catchment. Litter decomposition and litterbag invertebrates wereexamined by placing litterbags filled with pine ormaple litter in streams draining pine catchments andhardwood catchments during 1992–1993 and 1993–1994. Total benthic invertebrate abundance and biomass inthe pine stream was ca. 57% and 74% that of thehardwood stream, respectively. Shredder biomass wasalso lower in the pine stream but, as a result ofhigher Leuctra spp. abundance, shredderabundance was higher in the pine stream than thehardwood stream. Decomposition rates of both pine andred maple litter were significantly faster in pinestreams than adjacent hardwood streams (p<0.05). Total shredder abundance, biomass, and production weresimilar in maple bags from pine and hardwood streams. However, trichopteran shredder abundance and biomass,and production of some trichopteran taxa such asLepidostoma spp., were significantly higher in maplelitterbags from pine streams than hardwood streams(p<0.05). In contrast, plecopteran shredders(mainly Tallaperla sp.) were more important inmaple litterbags from hardwood streams. Shredderswere well represented in pine litterbags from pinestreams, but low shredder values were obtained frompine litterbags in hardwood streams. Resultssuggest conversion of hardwood forest to pinemonoculture influences taxonomic composition of streaminvertebrates and litter decomposition dynamics. Although the impact of this landscape-leveldisturbance on invertebrate shredder communitiesappeared somewhat subtle, significant differences indecomposition dynamics indicate vital ecosystem-levelprocesses are altered in streams draining pinecatchments.  相似文献   

8.
Information on the ecology of New Guinea streams is meagre, and data are needed on the trophic basis of aquatic production in rivers such as the Sepik in Papua New Guinea which have low fish yields. This study investigates the relationship between riparian shading (from savanna grassland to primary rainforest), algal and detrital food, and macroinvertebrate abundance and community structure in 6 Sepik River tributary streams. A particular aim was to elucidate macroinvertebrate community responses to changes in riparian conditions. All streams supported diverse benthic communities, but morphospecies richness (overall total 64) was less than in streams on the tropical Asian mainland; population densities of benthic invertebrates, by contrast, were similar to those recorded elsewhere. Low diversity could reflect limited taxonomic penetration, but may result from the absence of major groups (Plecoptera, Heptageniidae, Ephemerellidae, Psephenidae, Megaloptera, etc.) which occur on the Asian mainland. Population densities of all 19 of the most abundant macroinvertebrate taxa varied significantly among the 6 study streams, but community composition in each was broadly similar with dominance by Baetidae and (in order of decreasing importance), Leptophlebiidae, Orthocladiinae, Elmidae and Hydropsychidae. Principal components analysis (PCA) undertaken on counts of abundant macroinvertebrate taxa clearly separated samples taken in two streams from the rest. Both streams contained high detrital standing stocks and one was completely shaded by rainforest. Stepwise multiple-regression analysis indicated that population densities of the majority of abundant taxa (11 out of 19) across streams (10 samples per stream; n = 60) were influenced by algae and/or detritus, although standing stocks of these variables were not clearly related to riparian conditions. When regression analysis was repeated on mean counts of taxa per stream (dependent variables) versus features of each stream as a whole (thus n = 6), % shading and detritus were the independent variables yielding significant regression models most frequently, but pH, total-nitrogen loads and algae were also significant predictors of faunal abundance. Further regression analysis, undertaken separately on samples (n = 10) from each stream, confirmed the ability of algae and detritus to account for significant portions of the variance in macroinvertebrate abundance, but the significance of these variables varied among streams with the consequence that responses of individual taxa to algae or detritus was site-specific.Community functional organization — revealed by investigation of macroinvertebrate functional feeding groups (FFGs) — was rather conservative, and streams were codominated by collector-gatherers (mean across 6 streams = 43%) and grazers (36%), followed by filter-feeders (15%) and predators (7%). The shredder FFG was species-poor and comprised only 0.4% of total macroinvertebrate populations; shredders did not exceed 2% of benthic populations in any stream. PCA of FFG abundance data was characterized by poor separation among streams, although there was some evidence of clustering of samples from unshaded sites. The first 2 PCA axes accounted for 84% of the variation in the data suggesting that the poor separation resulted from the general similarity of FFG representation among streams. Although stepwise multiple-regression analysis indicated that algae and detritus accounted for significant proportions of the variations in population density and relative abundance of some FFGs, the response of community functional organization to changes in riparian conditions and algal and detrital food base was weak — unlike the deterministic responses that may be typical of north-temperate streams.  相似文献   

9.
1. Physico-chemical conditions and benthic macroinvertebrates were studied in two adjacent alpine streams in the Tyrolean Alps, Austria, for 2 years, and aquatic insect emergence was recorded for 1 year.
2. In the spring-fed system, maximum discharge and increased concentrations of suspended solids, nitrate and particulate phosphorus occurred during snowmelt in June. In the glacier-fed stream, high discharge and strong diel fluctuations in flow and concentrations of suspended solids created a harsh and unstable environment during summer. Glacial ablation, variation in groundwater inflow, and water inputs from tributaries draining calcareous rocks caused water chemistry to vary both seasonally and longitudinally in glacier-fed Rotmoosache.
3. A total of 126 aquatic or semi-aquatic invertebrate taxa were collected, 94 of which were found in the glacier-fed stream and 120 in the spring-fed stream. Chironomid abundance was 2–8 times and taxa richness 2–3 times lower in the glacier-fed stream than in the spring-fed stream, as was the number of chironomid taxa (72 versus 93 total).
4. These results broadly support the conceptual model by Milner & Petts (1994) concerning glacier-fed stream systems. However, single samples and seasonal means showed relatively high invertebrate abundance and richness, especially during winter, indicating a considerable degree of spatial and temporal variability.
5. We suggest that the seasonal shifts from harsh environmental conditions in summer to less severe conditions in autumn and a rather constant environment in winter are an important factor affecting larval development, life-history patterns and the maintenance of relatively high levels of diversity and productivity in glacier-fed streams.  相似文献   

10.
Bioturbation can affect community structure by influencing resource distribution and habitat heterogeneity. Bioturbation by detritivores in small headwater streams could affect community structure by reintroducing buried detrital resources into the food web and could also affect the distribution of various taxa on detritus. We evaluated the ability of the caddisfly Pycnopsyche gentilis to uncover experimentally buried leaves in a headwater stream. Packs of leaves were placed in enclosures and covered with a known volume of sediment. We added 0, 3 or 6 large Pycnopsyche to the enclosures which were permeable to most other invertebrate taxa. Leaf packs were sampled after 23 days and leaf pack mass, the amount of sediment covering the leaf packs, and macro‐ and microinvertebrate densities on leaf packs were quantified. There was a significant negative relationship between Pycnopsyche density and leaf pack mass. Pycnopsyche also reduced the volume of sediment covering leaf packs. Pycnopsyche had complex effects on the abundance of invertebrate taxa associated with the leaves. Some taxa exhibited their highest abundance in the 3 Pycnopsyche treatment while others exhibited non‐significant increases as Pycnopsyche density increased. These results suggest that the beneficial effects of Pycnopsyche (e.g. uncovering leaves which increases the availability of habitat and food) outweigh any negative effects (e.g. disturbance, encounter competition) of the caddisfly when it is present at lower densities. However, the negative impacts of Pycnopsyche appear to outweigh the positive effects via sediment removal at higher caddisfly densities for some taxa. Our results suggest that bioturbating organisms in streams have the potential to reintroduce organic matter to detrital food webs and affect the distribution and abundance of benthic taxa associated with organic matter.  相似文献   

11.
Kaller  M.D.  Hartman  K.J. 《Hydrobiologia》2004,518(1-3):95-104
When land use practices alter natural hydrologic and sediment delivery regimes, the effects usually are negative to macroinvertebrates. We hypothesized a threshold level of fine sediment accumulation in the substrate may exist where benthic macroinvertebrate abundance and diversity will be significantly reduced. We surveyed seven Appalachian streams with different levels of substrate fine sediment twice yearly from fall 1998 to spring 2000. Three riffles (with 2 replicates each) were sampled with a 0.25 mm Surber sampler in each season and stream. Simple linear regression was used to test relationships between substrate size classes and metrics, and nested ANOVA was used to test macroinvertebrate differences among streams. Consistent negative relationships with the finest substrate particles (<0.25 mm) were observed with EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa richness. In seasons of normal hydrology, EPT taxa richness significantly decreased (p<0.05) in streams where fine substrate particles (<0.25 mm) exceeded 0.8–0.9% of riffle substrate composition. In drought seasons, fine sediment (<0.25 mm) exceeded 0.8–0.9% in most surveyed streams, lowering macroinvertebrate diversity in all streams. In these streams, a threshold for EPT diversity appears to be in excess of 0.8–0.9% fine sediment (<0.25 mm) substrate accumulation. We suggest similar threshold levels exist in other streams where macroinvertebrate taxa are altered with potential effects on trophic webs and nutrient processing.  相似文献   

12.
In southwestern British Columbia (BC, Canada) and within a relatively small geographic area, lotic environments range from streams in coastal rainforests, to streams in arid continental grasslands, to very large rivers. Little is known about the invertebrate communities in large rivers in general, or in the streams of continental BC. The purpose of this study was to determine whether the benthic invertebrate community structure changes spatially between small coastal and small interior streams; between small streams versus large rivers; and whether changes in the benthic community are related to the environmental conditions. Kicknet samples and environmental data were collected from three coastal streams, three continental streams and two large rivers (discharge of 781 and 3620 m3/s, respectively). The large river sites had low invertebrate abundance, species richness and diversity, relative to the small streams. The coastal streams had the highest species richness and the continental streams had the highest invertebrate abundance. A number of taxa were specific to each class of stream. Invertebrate abundance decreased with river size, and increased with elevation, pH, conductivity, alkalinity, NO2NO3-N, total Kejldahl nitrogen and percent carbon in suspended solids.  相似文献   

13.
Coal mining in central Appalachia USA causes increased specific conductance in receiving streams. Researchers have examined benthic macroinvertebrate community structure in such streams using temporally discrete measurements of SC and benthic macroinvertebrates; however, both SC and benthic macroinvertebrate communities exhibit intra-annual variation. Twelve central Appalachian headwater streams with reference quality physical habitat and physicochemical conditions (except for elevated SC in eight streams) were sampled ≤fourteen times each between June 2011 and November 2012 to evaluate benthic macroinvertebrate community structure. Specific conductance was recorded at each sampling event and by in situ data loggers. Streams were classified by mean SC Level (Reference, 17–142 μS/cm; Medium, 262–648 μS/cm; and High, 756–1535 μS/cm). Benthic macroinvertebrate community structure was quantified using fifteen metrics selected to characterize community composition and presence of taxa from orders Ephemeroptera, Plecoptera, and Trichoptera. Metrics were analyzed for differences among SC Levels and months of sampling. Reference streams differed significantly from Medium-SC and High-SC streams for 11 metrics. Medium-SC streams had the most metrics exhibiting significant differences among months. Relative abundances of Plecoptera and Trichoptera were not sensitive to SC, as the families Leuctridae and Hydropsychidae exhibited increased relative abundance (vs. reference) in streams with elevated SC. In contrast, Ephemeroptera richness and relative abundance were lower, relative to reference, in elevated-SC streams despite increased relative abundance of Baetidae. Temporal variability was evident in several metrics due to influence by taxa with seasonal life cycles. These results demonstrate that benthic macroinvertebrate communities in elevated-SC streams are altered from reference condition, and that metrics differ in SC sensitivity. The time of year when samples are taken influenced measured levels and differences from reference condition for most metrics.  相似文献   

14.
The effects of the lampricide, TFM, on the abundance of macroinvertebrates in the benthos of Wilmot Creek, a hardwater tributary to Lake Ontario, was examined over 1 year. Drifting macroinvertebrates were also collected before, during and after TFM treatment. Significant decreases in benthic abundance were exhibited by Dolophilodes sp., Tubificoidea, Cricotopus sp. and Macrotendipes sp. throughout the 350 days following treatment. Only the decrease in abundance of Dolophilodes sp. and Tubificoidea could be attributed to TFM treatment. Increases in drift abundance observed during treatment were generally an accurate indicator of TFM-sensitive macroinvertebrates. The most sentive taxa (Dolophilodes sp., Dugesia sp. and Tubificoidea) responded immediately following the introduction of TFM. Branchiobdellida, Diamesa sp., Dicranota sp., Lumbricidae and Nemouridae exhibited increases in drift abundance 8–10 h after the introduction of TFM, however, were considered less sensitive than the former taxa because a decline in their abundance in the benthos was not detected.The response of the benthic invertebrates found in this hardwater creek was similar to those observed during studies of softwater streams. Only the most severely affected taxa were not present in the benthos 350 days after treatment.  相似文献   

15.
The application of salt is the primary means of deicing roads and highways in colder regions of north-eastern North America. This has increased the chloride concentrations of many lake and stream ecosystems. While this salinization has been documented, less is known about how increased salinity alters benthic communities in downstream ecosystems. Natural thresholds, at which there are large scale changes in community composition, have not yet been established for many types of contaminants, including chloride. The diatom community, which is sensitive to small changes in the ambient environment, has the potential to be a strong indicator of salinization effects on stream ecosystems. In this study, we sampled diatom communities in 41 streams across a salinity gradient throughout south central Ontario, Canada. We sampled benthic diatom assemblages in early May following complete snowmelt, when stream water chloride concentrations ranged from 5 to 502 mg/L. Based on redundancy analysis, we confirmed a strong association between the species composition of the diatom community and water conductivity, a commonly used index of stream salinity. Taxa indicator threshold analyses (TITAN) indicated the community changed substantially at chloride concentrations greater than 35 mg/L. We also found that, an indicator taxa, Meridion circulare, was extremely sensitive to high concentrations of salt and negatively correlated with chloride. In a wide synoptic survey of streams of our region, we found that streams in most developed watersheds exceed tolerance thresholds for benthic diatom communities. This work suggests that current chloride concentrations in urban watersheds are greatly exceeding the benthic community thresholds, for which improved management and regulatory practices are needed. Salinization thus appears to be an important feature of urban streams and needs to be considered as an important ecological driver in future studies.  相似文献   

16.
Changes in regional climate in the Rocky Mountains over the next 100 years are expected to have significant effects on biogeochemical cycles and hydrological processes. In particular, decreased discharge and lower stream depth during summer when ultraviolet radiation (UVR) is the highest combined with greater photo-oxidation of dissolved organic materials (DOM) will significantly increase exposure of benthic communities to UVR. Communities in many Rocky Mountain streams are simultaneously exposed to elevated metals from abandoned mines, the toxicity and bioavailability of which are also determined by DOM. We integrated field surveys of 19 streams (21 sites) along a gradient of metal contamination with microcosm and field experiments conducted in Colorado, USA, and New Zealand to investigate the influence of DOM on bioavailability of heavy metals and exposure of benthic communities to UVR. Spatial and seasonal variation in DOM were closely related to stream discharge and significantly influenced heavy metal uptake in benthic organisms. Qualitative and quantitative changes in DOM resulting from exposure to sunlight increased UV-B (290–320 nm) penetration and toxicity of heavy metals. Results of microcosm experiments showed that benthic communities from a metal-polluted stream were tolerant of metals, but were more sensitive to UV-B than communities from a reference stream. We speculate that the greater sensitivity of these communities to UV-B resulted from costs associated with metal tolerance. Exclusion of UVR from 12 separate Colorado streams and from outdoor stream microcosms in New Zealand increased the abundance of benthic organisms (mayflies, stoneflies, and caddisflies) by 18% and 54%, respectively. Our findings demonstrate the importance of considering changes in regional climate and UV-B exposure when assessing the effects of local anthropogenic stressors.  相似文献   

17.
18.
Summary Seasonal and spatial patterns of benthic invertebrate abundance were examined in relation to benthic detritus in Monument Creek, an Alaskan subarctic stream. The total macroinvertebrate fauna showed a mid-summer low in abundance, increasing to seasonal highs in winter/early spring (November/May). Shredders were a small portion of the benthic fauna or leaf pack fauna in summer but increased rapidly (in biovolume) following autumnal leaf fall to dominate the fauna by early winter (October/November). Abundance was strongly correlated with quantity of detritus in the sample. Comparison of benthic macroinvertebrate densities from Alaskan streams with comparable data from temperate zone streams shows that Alaskan streams are similar to temperate zone streams in range of abundance. Each unit of benthic detritus in Monument Creek is associated with a relatively large number of small (low individual biomass) shredders compared to streams in temperate regions. Detrital resources in this subarctic stream were meager, compared to temperate streams, and appeared to strongly influence the spatial and temporal patterns of detritivores.  相似文献   

19.
Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate‐sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst.  相似文献   

20.
The impacts of watershed urbanization on streams have been studied worldwide, but are rare in China. We examined relationships among watershed land uses and stream physicochemical and biological attributes, impacts of urbanization on overall stream conditions, and the response pattern of macroinvertebrate assemblage metrics to the percent of impervious area (PIA) of watersheds in the middle section of the Qiantang River, Zhejiang Province, China. Environmental variables and benthic macroinvertebrates of 60 stream sites with varied levels of watershed urban land use were sampled in April, 2010. Spearman correlation analysis showed watershed urbanization levels significantly correlated with increased stream depth, width, and values of conductivity, total nitrogen, ammonia, phosphate, calcium, magnesium, and chemical oxygen demand for the study streams. There was significant difference in total taxa richness, Empheroptera, Plecoptera, and Trichoptera (EPT) taxa richness, and Diptera taxa richness, percentages of individual abundances of EPT, Chironomidae, shredders, filterers, and scrapers, and Shannon–Wiener diversity index between reference streams and urban impacted streams. In contrast, percentages of individual abundances for collectors, oligochaeta, and tolerant taxa, and biotic index were significantly higher in urban impacted than reference streams. All the above metrics were significantly correlated with PIA. The response patterns of total taxa richness, EPT taxa richness, and Shannon–Wiener diversity index followed a drastic decrease at thresholds of 3.6, 3.7, and 5.5% of PIA, respectively. Our findings indicate that stream benthic macroinvertebrate metrics are effective indicators of impacts of watershed urban development, and the PIA-imperviousness thresholds we identified could potentially be used for setting benchmarks for watershed development planning and for prioritizing high valued stream systems for protection and rehabilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号