首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human C8 is one of five complement components (C5b, C6, C7, C8 and C9) that interact to form the membrane attack complex (MAC). C8 is composed of a disulfide-linked C8alpha-gamma heterodimer and a noncovalently associated C8beta chain. C8alpha and C8beta are homologous to C6, C7 and C9, whereas C8gamma is the only lipocalin in the complement system. Lipocalins have a core beta-barrel structure forming a calyx with a binding site for a small molecule. In C8gamma, the calyx opening is surrounded by four loops that connect beta-strands. Loop 1 is the largest and contains Cys40 that links to Cys164 in C8alpha. To determine if these loops mediate binding of C8alpha prior to interchain disulfide bond formation in C8alpha-gamma, the loops were substituted separately and in combination for the corresponding loops in siderocalin (NGAL, Lcn2), a lipocalin that is structurally similar to C8gamma. The siderocalin-C8gamma chimeric constructs were expressed in E. coli, purified, and assayed for their ability to bind C8alpha. Results indicate at least three of the four loops surrounding the entrance to the C8gamma calyx are involved in binding C8alpha. Binding near the calyx entrance suggests C8alpha may restrict and possibly regulate access to the C8gamma ligand binding site.  相似文献   

2.
Plumb ME  Sodetz JM 《Biochemistry》2000,39(42):13078-13083
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that interact to form the cytolytic membrane attack complex, or MAC. It is an oligomeric protein composed of three subunits (C8alpha, C8beta, C8gamma) that are products of different genes. In C8 from serum, these are arranged as a disulfide-linked C8alpha-gamma dimer that is noncovalently associated with C8beta. In this study, the site on C8alpha that mediates intracellular binding of C8gamma to form C8alpha-gamma was identified. From a comparative analysis of indels (insertions/deletions) in C8alpha and its structural homologues C8beta, C6, C7, and C9, it was determined that C8alpha contains a unique insertion (residues 159-175), which includes Cys(164) that forms the disulfide bond to C8gamma. Incorporation of this sequence into C8beta and coexpression of the resulting construct (iC8beta) with C8gamma produced iC8beta-gamma, an atypical disulfide-linked dimer. In related experiments, C8gamma was shown to bind noncovalently to mutant forms of C8alpha and iC8beta in which Cys(164)-->Gly(164) substitutions were made. In addition, C8gamma bound specifically to an immobilized synthetic peptide containing the mutant indel sequence. Together, these results indicate (a) intracellular binding of C8gamma to C8alpha is mediated principally by residues contained within the C8alpha indel, (b) binding is not strictly dependent on Cys(164), and (c) C8gamma must contain a complementary binding site for the C8alpha indel.  相似文献   

3.
Human C8 gamma is a 22 kDa subunit of complement component C8, which is one of five components (C5b, C6, C7, C8, C9) that interact to form the cytolytic membrane attack complex (MAC) of complement. C8 contains three nonidentical subunits (alpha, beta, gamma) that are products of different genes. These subunits are arranged asymmetrically to form a disulfide-linked C8 alpha-gamma dimer that is noncovalently associated with C8 beta. C8 alpha and C8 beta are homologous to C6, C7 and C9 and together these proteins comprise what is referred to as the 'MAC protein family'. By comparison, C8 gamma is distinct in that it belongs to the lipocalin family of small, secreted proteins which have the common ability to bind small hydrophobic ligands. While specific roles have been identified for C8 alpha and C8 beta in the formation and function of the MAC, a function for C8 gamma and the identity of its ligand are unknown. This review summarizes the current status of C8 gamma structure and function and the progress made from efforts to determine its role in the complement system.  相似文献   

4.
Human C8 is one of five components of the membrane attack complex of complement. It is an oligomeric protein composed of three subunits (C8 alpha, C8 beta, and C8 gamma) that are derived from different genes. C8 alpha and C8 beta are homologous and both contain a pair of tandemly arranged N-terminal modules [thrombospondin type 1 (TSP1) + low-density lipoprotein receptor class A (LDLRA)], an extended middle segment referred to as the membrane attack complex/perforin region (MACPF), and a pair of C-terminal modules [epidermal growth factor (EGF) + TSP1]. During biosynthetic processing, C8 alpha and C8 gamma associate to form a disulfide-linked dimer (C8 alpha-gamma) that binds to C8 beta through a site located on C8 alpha. In this study, the location of binding sites for C8 beta and C8 gamma and the importance of the modules in these interactions were investigated by use of chimeric and truncated forms of C8 alpha in which module pairs were either exchanged for those in C8 beta or deleted. Results show that exchange or deletion of one or both pairs of modules does not abrogate the ability of C8 alpha to form a disulfide-linked dimer when coexpressed with C8 gamma in COS cells. Furthermore, each chimeric and truncated form of C8 alpha-gamma retains the ability to bind C8 beta; however, only those containing the TSP1 + LDLRA modules from C8 alpha are hemolytically active. These results indicate that binding sites for C8 beta and C8 gamma reside within the MACPF region of C8 alpha and that interaction with either subunit is not dependent on the modules. They also suggest that the N-terminal modules in C8 alpha are important for C9 binding and/or expression of C8 activity.  相似文献   

5.
Anti-C8 alpha-gamma specific antibodies were used to isolate cDNA clones from a human liver expression library. Antibodies affinity-purified on the expressed hybrid protein of one clone bound exclusively to the gamma-chain of reduced C8 alpha-gamma. This clone, as well as a second full length cDNA clone obtained by hybridization screening, were sequenced and the complete primary structure for C8 gamma was established. Cyanogen bromide cleavage of C8 alpha-gamma released a 12 kDa carboxy-terminal C8 gamma fragment under both reducing and nonreducing conditions which was identified by fragment-specific, affinity-purified antibodies. Our data clearly show that C8 gamma has one internal disulfide bridge between cys-76 and cys-168 within the carboxy-terminal 12 kDa fragment, whereas the remaining cysteine residue 40 forms the disulfide bridge with C8 alpha. The overall sequence homology to plasma protein HC (23% amino acid identities) and the conservation of one internal cysteine bond and one free, surface-located cysteine residue suggests a highly conserved three-dimensional structure of C8 gamma and protein HC and also a possible functional relationship between these proteins.  相似文献   

6.
Slade DJ  Chiswell B  Sodetz JM 《Biochemistry》2006,45(16):5290-5296
Human C8 is one of five components of the membrane attack complex of complement (MAC). It contains three subunits (C8alpha, C8beta, C8gamma) arranged as a disulfide-linked C8alpha-gamma dimer that is noncovalently associated with C8beta. C8alpha, C8beta, and complement components C6, C7, and C9 form the MAC family of proteins. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. During MAC formation, C8alpha binds and mediates the self-polymerization of C9 to form a pore-like structure on target cells. The C9 binding site was previously shown to reside within a 52-kDa segment composed of the C8alpha N-terminal modules and MACPF domain (alphaMACPF). In the present study, we examined the role of the MACPF domain in binding C9. Recombinant alphaMACPF and a disulfide-linked alphaMACPF-gamma dimer were successfully produced in Escherichia coli and purified. alphaMACPF was shown to simultaneously bind C8beta, C8gamma, and C9 and form a noncovalent alphaMACPF.C8beta.C8gamma.C9 complex. Similar results were obtained for the recombinant alphaMACPF-gamma dimer. This dimer bound C8beta and C9 to form a hemolytically active (alphaMACPF-gamma).C8beta.C9 complex. These results indicate that the principal binding site for C9 lies within the MACPF domain of C8alpha. They also suggest this site and the binding sites for C8beta and C8gamma are distinct. alphaMACPF is the first human MACPF domain to be produced recombinantly and in a functional form. Such a result suggests that this segment of C8alpha and corresponding segments of the other MAC family members are independently folded domains.  相似文献   

7.
C8gamma is a 22-kDa subunit of human C8, which is one of five components of the cytolytic membrane attack complex of complement (MAC). C8gamma is disulfide-linked to a C8alpha subunit that is noncovalently associated with a C8beta chain. In the present study, the three-dimensional structure of recombinant C8gamma was determined by X-ray diffraction to 1.2 A resolution. The structure displays a typical lipocalin fold forming a calyx with a distinct binding pocket that is indicative of a ligand-binding function for C8gamma. When compared to other lipocalins, the overall structure is most similar to neutrophil gelatinase associated lipocalin (NGAL), a protein released from granules of activated neutrophils. Notable differences include a much deeper binding pocket in C8gamma as well as variation in the identity and position of residues lining the pocket. In C8gamma, these residues allow ligand access to a large hydrophobic cavity at the base of the calyx, whereas corresponding residues in NGAL restrict access. This suggests the natural ligands for C8gamma and NGAL are significantly different in size. Cys40 in C8gamma, which forms the disulfide bond to C8alpha, is located in a partially disordered loop (loop 1, residues 38-52) near the opening of the calyx. Access to the calyx may be regulated by movement of this loop in response to conformational changes in C8alpha during MAC formation.  相似文献   

8.
Expression of phospholipase C isozymes by murine B lymphocytes   总被引:5,自引:0,他引:5  
Cross-linking of membrane (m) Ig, the B cell receptor for Ag, activates protein tyrosine phosphorylation and hydrolysis of phosphotidylinositol 4,5-bisphosphate. The latter signal transduction pathway is an important mediator of antigen receptor engagement. The initial event in this pathway is the activation of phospholipase C (PLC). The identity of the isozyme of PLC used in B cells and the mechanism by which it becomes activated are currently unknown. The cDNA encoding five different isozymes have been cloned. As a first step in identifying the isozyme of PLC that is coupled to mIgM, murine cDNA fragments for the five cloned PLC isozymes were generated by the polymerase chain reaction (PCR), cloned, and used to screen a panel of B cell lines representing different stages of development for PLC mRNA expression. All the B cell lines tested expressed high levels of PLC alpha and PLC gamma 2 mRNA, whereas PLC beta and PLC delta mRNA expression were undetectable by both Northern blot and PCR analysis. PLC gamma 1 had a more complicated pattern of mRNA expression. PLC gamma 1 mRNA expression was lower than that observed for PLC alpha or PLC gamma 2 mRNA and varied widely among different cell lines. The pattern of PLC gamma 1 mRNA expression did not correlate with the developmental stage of the cell lines. The pattern of PLC gamma 1 protein expression in the panel of B cell lines correlated with the pattern of PLC gamma 1 mRNA expression. PLC gamma 1 expression was very low in several B cell lines, despite the fact that these cell lines show mIgM-stimulatable PLC activity. The variable and in some cases very low expression of PLC gamma 1 suggests that it may not be the form of PLC that is activated by mIgM. In contrast, PLC alpha and PLC gamma 2 were abundantly expressed in all B cell lines tested. This observation is consistent with the possibility that PLC alpha or PLC gamma 2 is activated by mIgM.  相似文献   

9.
Recognition of homologies may give hints about the structure and function of proteins; therefore, we are developing strategies to aid sequence comparisons. Detecting homology of mosaic proteins is especially difficult since the modules constituting these proteins are usually distantly related and their homology is not readily recognized by conventional computer programs. In the present work we show that the rules of the evolution of mosaic proteins can guide the identification of modules of mosaic proteins and can delineate the group of sequences in which the presence of homologous sequences may be expected. By this approach we can concentrate the search for homology to a limited group of sequences; thus ensuring a more intense and more fruitful search. The power of this approach is illustrated by the fact that it could detect homologies not identified by earlier methods of sequence comparison. In this paper we show that thrombomodulin contains a domain homologous with animal lectins, that complement components C9, C8 alpha and C8 beta have modules homologous with one of the repeat units of thrombospondin and that the somatomedin B module of vitronectin is homologous with the internal repeats of plasma cell membrane glycoprotein PC-1.  相似文献   

10.
Human C8 is one of five components of the cytolytic membrane attack complex of complement. It contains three subunits (C8alpha, C8beta, C8gamma) arranged as a disulfide-linked C8alpha-gamma heterodimer that is noncovalently associated with C8beta. C8gamma has the distinction of being the only lipocalin in the complement system. Lipocalins have a core beta-barrel structure forming a calyx with a binding site for a small hydrophobic ligand. A natural ligand for C8gamma has not been identified; however previous structural studies indicate C8gamma has a typical lipocalin fold that is suggestive of a ligand-binding capability. A distinctive feature of C8gamma is the division of its putative ligand binding pocket into a hydrophilic upper portion and a large hydrophobic lower cavity. Access to the latter is restricted by the close proximity of two tyrosine side chains (Y83 and Y131). In the present study, binding experiments were performed using lauric acid as a pseudoligand to investigate the potential accessibility of the lower cavity. The crystal structure of a C8gamma.laurate complex revealed that Y83 and Y131 can move to allow penetration of the hydrocarbon chain of laurate into the lower cavity. Introducing a Y83W mutation blocked access but had no effect on the ability of C8gamma to enhance C8 cytolytic activity. Together, these results indicate that the lower cavity in C8gamma could accommodate a ligand if such a ligand has a narrow hydrophobic moiety at one end. Entry of that moiety into the lower cavity would require movement of Y83 and Y131, which act as a gate at the cavity entrance.  相似文献   

11.
12.
13.
The eighth component of human complement (C8) is a serum protein containing three nonidentical subunits (alpha, beta, gamma) that are arranged as a disulfide-linked alpha-gamma dimer and a noncovalently associated beta chain. In earlier genetic studies, electrophoretic analysis of C8 protein polymorphisms revealed several allelic variants of alpha-gamma and beta. These were governed by separate loci designated C8A and C8B for alpha-gamma and beta, respectively. Genetic linkage analyses indicated that these loci were linked to each other and to chromosome 1 marker loci PGM1 and Rh, but it was unclear at the time if C8A was a single locus coding for a single-chain precursor form of alpha-gamma or if separate loci existed for alpha and gamma. Since evidence now indicates that alpha, beta, and gamma are encoded by separate genes, cDNA probes corresponding to each subunit were used to make direct assignments of the individual loci. Analysis of somatic cell hybrids revealed that only the alpha and beta loci are located on chromosome 1. Parallel analysis of genomic DNA digests using 5' and 3'-specific cDNA probes showed they are physically linked (less than 2.5 kb) and oriented 5' alpha-beta 3'. Further probing of the hybrid panel revealed that gamma is located on chromosome 9q. Thus, the observed genetic linkage of alpha-gamma to beta must be determined solely by alpha. In accordance with these findings, the C8 loci should now be designated C8A, C8B, and C8G for alpha, beta and gamma, respectively.  相似文献   

14.
15.
Chemosensory neurons of the vomeronasal organ (VNO) are supposed to detect pheromones controlling social and reproductive behavior in most terrestrial vertebrates. Recent studies indicate that pheromone signaling in VNO neurons is mediated via phospholipase C (PLC) activation generating the two second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Since G alpha(i) and G alpha(o) predominantly expressed in VNO neurons are usually not involved in activating PLC, it was explored if PLC activation may be mediated by G beta gamma subunits. It was found that a scavenger for beta gamma dimers reduced the urine-induced IP3 formation in VNO preparations in a dose-dependent manner indicating a role for G beta gamma complexes. Towards an identification of the relevant G beta and G gamma subunit(s), PCR approaches as well as immunohistochemical experiments were performed. It was found that out of the five known G beta subtypes, only G beta2 was expressed in both G alpha(i) as well as G alpha(o) neurons. Experimental approaches focusing on the spatial expression profile of identified G gamma subtypes revealed that G gamma8-positive neurons are preferentially localized to the basal region of the vomeronasal epithelium, whereas G gamma2-reactive cells are restricted to the apical G alpha(i)-positive layer of the sensory epithelium. As IP3 formation induced upon stimulation with volatile urinary compounds was selectively blocked by G gamma2-specific antibodies whereas second messenger formation elicited upon stimulation with alpha2u globulin was inhibited by antibodies recognizing G gamma8, it is conceivable that PLC activation in the two populations of chemosensory VNO neurons is mediated by different G beta gamma complexes.  相似文献   

16.
Scibek JJ  Plumb ME  Sodetz JM 《Biochemistry》2002,41(49):14546-14551
Human C8 is one of five components of the membrane attack complex of complement (MAC). It is composed of a disulfide-linked C8alpha-gamma heterodimer and a noncovalently associated C8beta chain. The C8alpha and C8beta subunits contain a pair of N-terminal modules [thrombospondin type 1 (TSP1) + low-density lipoprotein receptor class A (LDLRA)] and a pair of C-terminal modules [epidermal growth factor (EGF) + TSP1]. The middle segment of each protein is referred to as the membrane attack complex/perforin domain (MACPF). During MAC formation, C8alpha mediates binding and self-polymerization of C9 to form a pore-like structure on the membrane of target cells. In this study, the portion of C8alpha involved in binding C9 was identified using recombinant C8alpha constructs in which the N- and/or C-terminal modules were either exchanged with those from C8beta or deleted. Those constructs containing the C8alpha N-terminal TSP1 or LDLRA module together with the C8alpha MACPF domain retained the ability to bind C9 and express C8 hemolytic activity. By contrast, those containing the C8alpha MACPF domain alone or the C8alpha MACPF domain and C8alpha C-terminal modules lost this ability. These results indicate that both N-terminal modules in C8alpha have a role in forming the principal binding site for C9 and that binding may be dependent on a cooperative interaction between these modules and the C8alpha MACPF domain.  相似文献   

17.
Complement components C3, C4, and C5 are members of the thioester-containing alpha-macroglobulin protein superfamily. Within this superfamily, a unique feature of the complement proteins is a 150-residue-long C-terminal extension of their alpha-subunits that harbors three internal disulfide bonds. Previous reports have suggested that this is an independent structural module, homologous to modules found in other proteins, including netrins and tissue inhibitors of metalloproteinases. Because of its distribution, this putative module has been named both C345C and NTR. To assess the structures of these segments of the complement proteins, their relationships with other domains, and activities as independent structures, we expressed C345C from C3 and C5 in a bacterial strain that permits cytoplasmic disulfide bond formation. Affinity purification directly from cell lysates yielded recombinant C3- and C5-C345C with properties consistent with multiple intramolecular disulfide bonds and high beta-sheet contents. rC5-, but not rC3-C345C inhibited complement hemolytic activity, and surface plasmon resonance studies revealed that rC5-C345C binds to complement components C6 and C7 with dissociation constants of 10 and 3 nM, respectively. Our results provide strong evidence that this binding corresponds to the previously described reversible binding of C5 to C6 and C7, and taken together with earlier work, indicate that the C5-C345C module interacts directly with the factor I modules in C6 and C7. The high binding affinities suggest that complexes composed of C5 bound to C6 or C7 exist in plasma before activation and may facilitate assembly of the complement membrane attack complex.  相似文献   

18.
19.
Comparative models of GABA(A) receptors composed of alpha1 beta3 gamma2 subunits were generated using the acetylcholine-binding protein (AChBP) as a template and were used for predicting putative engineered cross-link sites between the alpha1 and the gamma2 subunit. The respective amino acid residues were substituted by cysteines and disulfide bond formation between subunits was investigated on co-transfection into human embryonic kidney (HEK) cells. Although disulfide bond formation between subunits could not be observed, results indicated that mutations studied influenced assembly of GABA(A) receptors. Whereas residue alpha1A108 was important for the formation of assembly intermediates with beta3 and gamma2 subunits consistent with its proposed location at the alpha1(+) side of GABA(A) receptors, residues gamma2T125 and gamma2P127 were important for assembly with beta3 subunits. Mutation of each of these residues also caused an impaired expression of receptors at the cell surface. In contrast, mutated residues alpha1F99C, alpha1S106C or gamma2T126C only impaired the formation of receptors at the cell surface when co-expressed with subunits in which their predicted interaction partner was also mutated. These data are consistent with the prediction that the mutated residue pairs are located close to each other.  相似文献   

20.
Although the pivotal role of follicular dendritic cells (FDCs) in humoral immune responses has been demonstrated, little is known of the molecular basis of biological functions and the cellular origin of FDC. We have recently generated a monoclonal antibody (mAb) against FDC by immunizing mice with FDC-like tonsillar stromal cells. The mAb 3C8 does not cross-react with bone marrow-derived blood cells. Partial amino acid sequencing revealed that 3C8 Ag is a novel human protein. In this study, we carried out a detailed analysis of 3C8 immunoreactivity with tonsil sections to examine cellular distribution of 3C8 Ag. 3C8 Ab recognized connective tissue fibroblasts in addition to FDC. Western blot analysis indicated that 3C8 antigen is expressed in various fibroblasts and is specific to human species. Furthermore, there was a correlation between 3C8 expression in several stromal cell lines and their co-stimulatory activity of germinal center B cell proliferation. These findings strongly support the view that FDCs originate from local fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号