首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A study of the relationship between the mechanical response of human iliac arteries subjected to sinusoidally varying dynamic pressures superimposed on a static pressure of 100 mm Hg (1mm Hg = 133 N/m2) and the development of arterial dilatation, with particular reference to poststenotic dilatation has been conducted. In 13 experiments, optical measurements of the amplitude of vessel wall movements in response to dynamic pressures of amplitude 5 mm Hg peak to peak indicated the presence of at least one, and at most four resonance peaks for frequencies in the mean range 0-100 Hz. Four specimens were vibrated at resonance and four at frequencies 15 Hz higher than resonance, in response to a dynamic pressure of 5 mm Hg peak to peak for 3 h. All specimens exhibited some dilatation, the average percentage increase in diameter being in the range 0.22 to 0.42% per hour. In four additional experiments, the dynamic pressure was doubled at constant frequency. This resulted in an increased amplitude of vibration and additional dilatation at an increased rate. It is concluded that the dynamic stresses present in the vessel influence the rate of dilatation.  相似文献   

2.
Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten the saccadic reaction time was examined. Subjects were 14 healthy young adults. Visual targets (LEDs) were located 10 degrees left and right of a central point. The targets were alternately lit for random durations of 2-4 seconds in a resting neck condition and various vibration conditions, and saccadic reaction times were measured. Vibration amplitude was 0.5 mm in every condition. The upper trapezius muscles were vibrated at 40, 60, 80, and 100 Hz in a sub-maximum stretch condition in which the muscles were stretched at 70% of maximum stretch. In addition, the muscles were vibrated at 60 Hz with the muscles maximally stretched, with 70% vertical pressure without stretching, and with vibration applied to the skin in the same area as the muscle vibration. At 60, 80, and 100 Hz at 70% maximum stretch, saccadic reaction time shortened significantly compared with the resting neck condition. However, no significant difference in the reaction time was observed among the frequencies. The saccadic reaction times in the maximum stretch condition, muscle pressure condition, and skin contact condition did not differ significantly from that in the resting neck condition. Vibration stimulation to the trapezius with 60-100 Hz frequencies at 0.5 mm amplitude in the sub-maximum stretch condition was effective for shortening saccadic reaction time. The main mechanism appears to be Ia information originating from the muscle spindle.  相似文献   

3.
1. Renshaw cells responding disynaptically to electrically induced group I volleys in the intact gastrocnemius-soleus (GS) nerve, were submitted to small-amplitude, high-frequency vibration applied longitudinally to the deefferented GS muscle in precollicular decerebrate cats. 2. Vibration of the GS muscle at 200/sec, 180 mu peak-to-peak amplitude for 80-100 msec produced a sudden increase in the discharge rate of Renshaw cells, which gradually decreased within 25-50 msec to reach a steady level higher than that recorded in the absence of vibration. 3. Excitation of Renshaw cells appeared at a threshold amplitude of vibration (at 200-250/sec) of 5-20 mu and increased to a maximum value for amplitudes of about 70-80 mu, i.e., when all the primary endings of the spindles from the GS muscle had been driven by the stimulus. Recruitment of the secondary endings of the muscle spindles, due to large amplitude muscle vibration, did not modify the response of the Renshaw cells to the mechanically induced group Ia volleys. 4. These findings were obtained with the GS muscle pulled at 8 mm of initial extension. A threshold response of Renshaw cells to vibration appeared at 4 mm of static stretch, while maximal responses occurred at 8 mm. No further increase and actually a slight decrease in the response appeared for initial extensions of the muscle of 10-12 mm. 5. For a given vibration amplitude, the response of the Renshaw cells increased with increasing frequencies of vibration to reach the maximum at frequencies of 150-250/sec. Bursts of Renshaw cell discharges synchronous to each stroke of vibrator occurred only for low frequencies of stimulation (less than 25/sec). 6. It is concluded that vibration of the GS muscle represents a very effective method in exciting the Renshaw cells and that this response depends upon selective stimulation of homonymous motoneurons monosynaptically excited by the orthodromic volleys originating from the primary endings of the corresponding muscle spindles.  相似文献   

4.
The combined effects of vibration and noise on palmar sweating were studied experimentally in healthy subjects. Ten subjects were exposed to vibration at an acceleration of 100 m.sec-2 root mean square at a frequency of 125 Hz, a noise level of 105 dB(A) at a frequency of 1000 Hz and both stimuli together. Vibration was applied to the right hand and noise to both ears from headphones. Palmar sweating was measured by the ventilated capsule method. Vibration caused a marked increase in palmar sweating of the right hand directly exposed to vibration and also of the left hand not exposed to vibration. Simultaneous vibration and noise caused a greater increase in palmar sweating than by each of the factors separately. The combined effects tended to be greater in subjects who were more susceptible to vibration or noise.  相似文献   

5.
This study examined (1) the influence of whole body vibration (WBV) frequency (20 Hz, 30 Hz, 40 Hz), amplitude (low: 0.8 mm and high: 1.5 mm) and body postures (high-squat, deep-squat, tip-toe standing) on WBV transmissibility and signal purity, and (2) the relationship between stroke motor impairment and WBV transmissibility/signal purity. Thirty-four participants with chronic stroke were tested under 18 different conditions with unique combinations of WBV frequency, amplitude, and body posture. Lower limb motor function and muscle spasticity were assessed using the Fugl-Meyer Assessment and Modified Ashworth Scale respectively. Nine tri-axial accelerometers were used to measure acceleration at the WBV platform, and the head, third lumbar vertebra, and bilateral hips, knees, and ankles. The results indicated that WBV amplitude, frequency, body postures and their interactions significantly influenced the vibration transmissibility and signal purity among people with chronic stroke. In all anatomical landmarks except the ankle, the transmissibility decreased with increased frequency, increased amplitude or increased knee flexion angle. The transmissibility was similar between the paretic and non-paretic side, except at the ankle during tip-toe standing. Less severe lower limb motor impairment was associated with greater transmissibility at the paretic ankle, knee and hip in certain WBV conditions. Leg muscle spasticity was not significantly related to WBV transmissibility. In clinical practice, WBV amplitude, frequency, body postures need to be considered regarding the therapeutic purpose. Good contact between the feet and vibration platform and symmetrical body-weight distribution pattern should be ensured.  相似文献   

6.
Purpose: To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV).

Materials and methods: This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50?Hz were used. Surface electromyography, collision force between vibration platform and participant’s heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded.

Results: The collision force was the main independent predictor of electromyographic amplitude.

Conclusion: The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.  相似文献   

7.
水浮莲种子是一种奇特的需光种子。在黑暗中,GA_2或BA均不能代替光照诱导萌发,可是0.1μl/l乙烯却能引起部分种子萌发,在1000μ1/1乙烯的作用下,发芽率可达80%,接近全光照处理的萌发水平(91%发芽率)。ACC也能诱导水浮莲种子的萌发,0.1 mM浓度可获30%发芽率。在较短光照下,ACC对种子萌发有增效作用。在光照前应用ACC,其诱导效应大于两者同时施用。在照光萌发中,种子的内源ACC含量及乙烯释放量均显著增加。CoCl_2和AOA均能抑制光的诱导萌发。推论光打破休眠诱导萌发的作用是与乙烯的生成密切相关。  相似文献   

8.
Vibration at 50 Hz significantly stimulated seed germinationand root elongation in both rice and cucumber plants. The vibrationbarely affected the elongation of cucumber hypocotyls but stimulatedthe elongation of rice coleoptiles. Thus, plants' responsesto vibration at a particular frequency differ from those toother mechanical stimuli. (Received September 10, 1990; Accepted April 12, 1991)  相似文献   

9.
High-frequency external body vibration, combined with constant gas flow at the tracheal carina, was previously shown to be an effective method of ventilation in normal dogs. The effects of frequency (f) and amplitude of the vibration were investigated in the present study. Eleven anesthetized and paralyzed dogs were placed on a vibrating table (4-32 Hz). O2 was delivered near the tracheal carina at 0.51.kg-1.min-1, while mean airway pressure was kept at 2.4 +/- 0.9 cmH2O. Table vertical displacement (D) and acceleration (a), esophageal (Pes), and tracheal (Ptr) peak-to-peak pressures, and tidal volume (VT) were measured as estimates of the input amplitude applied to the animal. Steady-state arterial PCO2 (PaCO2) and arterial PO2 (PaO2) values were used to monitor overall gas exchange. Typically, eucapnia was achieved with f greater than 16 Hz, D = 1 mm, a = 1 G, Pes = Ptr = 4 +/- 2 cmH2O, and VT less than 2 ml. Inverse exponential relationships were found between PaCO2 and f, a, Pes, and Ptr (exponents: -0.69, -0.38, -0.48, and -0.54, respectively); PaCO2 decreased linearly with increased displacement or VT at a fixed frequency (17 +/- 1 Hz). PaO2 was independent of both f and D (393 +/- 78 Torr, mean +/- SD). These data demonstrate the very small VT, Ptr, and Pes associated with vibration ventilation. It is clear, however, that mechanisms other then those described for conventional ventilation and high-frequency ventilation must be evoked to explain our data. One such possible mechanism is forcing of flow oscillation between lung regions (i.e., forced pendelluft).  相似文献   

10.
Neck muscle vibration was applied to human subjects to assess the influences of neck abnormal proprioceptive input on the organization and execution of gait. Subjects walked blindfolded to a previously seen target, located straight ahead at ~4 m. Vibration was applied on the right side of the neck, both during and before walking. The variables measured were length, duration, and velocity of trajectory; relative and absolute frontal errors at target; and width of walking support base. Vibration applied during locomotion produced an undershoot of target and deviation of gait trajectory toward the side opposite to vibration. Vibration applied before locomotion produced no effect on length of trajectory but slowing of velocity and nonsystematic deviation. When vibration frequency was increased, the amplitude of the nonsystematic deviation increased. Vibration applied during or before stance trials had minor effects on body sway. Vibration before stance had no effect on the position of mean center of foot pressure, whereas vibration during stance displaced it to the side opposite to the vibrated muscle. We suggest that vibration during locomotion reduces length and velocity of trajectory because of a direct action on the locomotor centers and produces trajectory deviation related to its effect on stance. Vibration before locomotion causes a major, nonsystematic deviation from the planned trajectory, possibly connected to a disorientation of the internal references.  相似文献   

11.
Body lean response to bilateral vibrations of soleus muscles were investigated in order to understand the influence of proprioceptive input from lower leg in human stance control. Proprioceptive stimulation was applied to 17 healthy subjects by two vibrators placed on the soleus muscles. Frequency and amplitude of vibration were 60 Hz and 1 mm, respectively. Vibration was applied after a 30 s of baseline. The vibration duration of 10, 20, 30 s respectively was used with following 30 s rest. Subjects stood on the force platform with eyes closed. Postural responses were characterized by center of pressure (CoP) displacements in the anterior-posterior (AP) direction. The CoP-AP shifts as well as their amplitudes and velocities were analyzed before, during and after vibration. Vibration of soleus muscles gradually increased backward body tilts. There was a clear dependence of the magnitude of final CoP shift on the duration of vibration. The amplitude and velocity of body sway increased during vibration and amplitude was significantly modulated by duration of vibration as well. Comparison of amplitude and velocity of body sway before and after vibration showed significant post-effects. Presented findings showed that somatosensory stimulation has a long-term, direction-specific influence on the control of postural orientation during stance. Further, the proprioceptive input altered by soleus muscles vibration showed significant changes in postural equilibrium during period of vibration with interesting post-effects also.  相似文献   

12.
蓝花丹(Plumbago auriculata Lam.)原产南非,由于其存在自交不亲和现象,导致自然结实率极低。本文研究了蓝花丹种子的形态结构、吸水特性及最适萌发温度,根据形态观测以及发芽率等指标筛选出优质种子,并对优质种子不同的干燥方法、贮藏温度等进行探讨。结果表明:蓝花丹种子呈长椭圆状,长8.00~13.80 mm,长宽比约为5.3:1。种皮薄而柔软,有网状褶皱。外种皮表面有附着物,大面积分布有腺体,利于种子传播。胚芽靠近合点,萌发率较高。种子播种前的浸种时间应保持在11 h以上,最适发芽温度为25~30℃。当种皮颜色为深褐色,种子长度大于11 mm且发芽率大于75%时,可判断为优质种子,发生此性状时即为最佳采种时间。种子适宜的干燥方式为烘箱内30℃干燥1 d,干燥种子最佳贮藏温度为-86℃,且贮藏时间越短发芽率越高,而新鲜种子在此条件下不宜贮藏超过15 d。  相似文献   

13.
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.  相似文献   

14.
Muscle activity and joint moment of the lower limbs can provide different information about the stimulation of controlled whole-body vibration (CWBV) on human body. Previous studies investigated the immediate effects of the intensity of CWBV on enhancing lower-limb muscle activity. However, no study has examined the possible influence of CWBV intensity on joint loading. It remains unexplored how CWBV intensity impacts joint loading. This study was carried out (1) to quantify the effects of CWBV intensity in terms of vibration frequency and amplitude on the lower limb joint moments and (2) to examine the relationship between leg joint moments and vibration intensity characterized by the platform’s acceleration, that is determined by frequency and amplitude, during standing among young adults. Thirty healthy young adults participated in this study. Each participant experienced nine vibration intensity levels dependent upon the frequency (10, 20, and 30 Hz) and amplitude (1, 2, and 3 mm) while standing on a side-alternating vibration platform. Their body kinematics and vertical reaction forces between the feet and platform were collected. Inverse dynamics was employed to calculate the resultant moment for the ankle, knee, and hip joints in the sagittal plane. Our results revealed that the root-mean-square moment significantly increases with increasing vibration frequency or amplitude for all three joints. Further, all joint moments are strongly and positively correlated with the platform acceleration.  相似文献   

15.
1. The unconditioned feeding response of the mottled sculpin, Cottus bairdi, was used to measure threshold sensitivity of the lateral line system to a vibrating sphere as a function of stimulus position (i.e., sphere near head, trunk or tail) and vibration frequency. In addition, extracellular recording techniques were used to measure threshold sensitivity curves for posterior lateral line nerve fibers for the same stimulus positions used for measuring trunk sensitivity in behavioral measurements. 2. For all stimulus positions, behaviorally-measured threshold sensitivity was relatively independent of vibration frequency from 10 to 100 Hz when defined in terms of water acceleration, rather than velocity or displacement. Best thresholds for stimuli placed 15 mm away from the head were around -75 dB re: 1m/s(2), approximately 20 dB less than that for stimuli placed at the same distance near the tail. Trunk sensitivity was intermediate. 3. Physiologically-measured threshold sensitivity, in terms of acceleration, was also relatively independent of of frequency from 10 to 100 Hz in most fibers. A smaller number of fibers showed a decline in acceleration sensitivity after 10-30 Hz, with the rate of decline being equivalent to equal velocity sensitivity. Best sensitivity of all fibers fell between -40 and -70 dB re: 1m/s (2). 4. These results indicate that (a) behavioral thresholds are based on acceleration-sensitive endorgans--most likely lateral line canal (rather than superficial) neuromasts, (b) behavioral performance can be accounted for on the basis of information from a single population of fibers, and (c) sensitivity varies along the fish's body in a manner that corresponds to the size and distribution of neuromasts.  相似文献   

16.
The discharge rate of muscle spindle afferents normally provides a precise signal of muscle length. Vibration of a muscle or its tendon induces an increase in afferent discharge which then no longer represents true muscle length; however, this increased proprioceptive input is interpreted in the central nervous system as a lengthening of the muscle. The incremented signal gives rise to illusions of displacement, or movement, of a fixed, vibrated limb. A visual target attached to such a vibrated limb also appears to move. We now report that vibration of the neck muscles influences visual localisation by inducing illusory movement of targets in visual space. Subjects were seated in a totally dark room and viewed a light-emitting diode (LED). The LED was placed at eye level approximately in the body midline at a distance of 70 cm. They held a physiotherapy vibrator in the left hand with its tip against the left side of the neck. When vibration was initiated the LED appeared to move rightward. The position of the tip of the vibrator was adjusted to produce the maximum apparent displacement to the right. In some subjects the illusion had a vertical component. Subjects maintained the vibrator in position and described the illusion when vibration began, during vibration and at its end. They reported that, initially, the target moved to the right but this displacement ceased after a second or two. The target then appeared to continue in motion without changing its position. When vibration ended the target returned to its initial position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this investigation was to examine the acute effects of whole-body vibration (WBV) on muscular strength, flexibility, and heart rate (HR). Twenty adults (10 men, 10 women) untrained to WBV participated in the study. All subjects completed assessment of lower-extremity isokinetic torque, flexibility, and HR immediately before and after 6 minutes of WBV and 6 minutes of leg cycling ergometry (CYL), in randomized order. During WBV, subjects stood upright on a vibration platform for a total of 6 minutes. Vibration frequency was gradually increased during the first minute to a frequency of 26 Hz, which was maintained for the remaining 5 minutes. During CYL, power output was gradually increased to 50 W during the first minute and maintained at that power output for the remaining 5 minutes. Lower-extremity flexibility was determined using the sit-and-reach box test. Peak and average isokinetic torque of knee extension and flexion were measured by means of a motor-driven dynamometer with velocity fixed at 120 degrees .s. Change scores for the outcome measures were compared between treatments using Student's paired t-tests. Analysis revealed significantly greater HR acceleration with CYL (24.7 bpm) than after WBV (15.8 bpm). The increase of sit-and-reach scores after WBV (4.7 cm) was statistically greater (p < 0.05) than after CYL (0.8 cm). After WBV, increases in peak and average isokinetic torque of knee extension, 7.7% and 9.6%, were statistically greater than after CYL (p < 0.05). Average torque of knee flexion also increased more with WBV (+7.8%) than with CYL (-1.5%) (p < 0.05). The findings of this study indicate that short-term WBV standing elicits acute enhancements of lower-extremity muscular torque and flexibility, suggesting the application of this technology as a preparatory activity before more intense exercise.  相似文献   

18.
We examined whether spectrally active phytochrome A (PhyA) and phytochrome B (PhyB) play specific roles in the induction of seed germination in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutants, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102: 269-277) and hy3-Bo64 (J. Reed, P.Nagpal, D.S. Poole, M. Furuya, J. Chory [1993] Plant Cell 5: 147-157). When dormant seeds of each genotype imbibed in the dark on aqueous agar plates, the hy3 (phyB) mutant did not germinate, whereas the fre1 (phyA) mutant germinated at a rate of 50 to 60%, and the wild type (WT) germinated at a rate of 60 to 70%. By contrast, seeds of all genotypes germinated to nearly 100% when plated in continuous irradiation with white or red light. When plated in continuous far-red light, however, frequencies of seed germination of the WT and the fre1 and hy3 mutants averaged 14, nearly 0, and 47%, respectively, suggesting that PhyB in the red-absorbing form prevents PhyA-dependent germination under continuous far-red light. When irradiated briefly with red or far-red light after imbibition for 1 h, a typical photoreversible effect on seed germination was observed in the fre1 mutant and the WT but not in the hy3 mutant. In contrast, when allowed to imbibe in the dark for 24 to 48 h and exposed to red light, the seed germination frequencies of the hy3 mutant were more than 40%. Immunoblot analyses of the mutant seeds showed that PhyB apoprotein accumulated in dormant seeds of the WT and the fre1 mutant as much as in the seeds that had imbibed. In contrast, PhyA apoprotein, although detected in etiolated seedlings grown in the dark for 5 d, was not detectable in the dormant seeds of the WT and the hy3 mutant. The above physiological and immunochemical evidence indicates that PhyB in the far-red-absorbing form was stored in the Arabidopsis seeds and resulted in germination in the dark. Hence, PhyA does not play any role in dark germination but induces germination under continuous irradiation with far-red light. Finally, we examined seeds from a signal transduction mutant, det1, and a det1/hy3 double mutant. The det1 seeds exhibited photoreversible responses of germination on aqueous agar plates, and the det1/hy3 double mutant seeds did not. Hence, DET1 is likely to act in a distinct pathway from PhyB in the photoregulation of seed germination.  相似文献   

19.
The aim of this study was to analyze surface electromyography activity (sEMG) and rating of perceived exertion (RPE) responses in different muscles while standing on a vibrating platform producing oscillations of different frequencies and amplitudes. Twenty community-dwelling older adults (79.6 ± 3.2 years) took part in the research. Subjects were exposed to 12 different vibration treatments of 15 seconds separated by 1 minute of rest in random order to check the influence of frequency (25, 35, and 45 Hz) and amplitude (1 mm [low] and 3.1 mm [high]) vibration on sEMG signal and RPE. Additionally, the use of a soft pad was also examined for its influence on these measures. Three-factor analysis of variance for RPE and both lower and whole-body sEMGs revealed a significant amplitude main effect (p < 0.01), and soft mat effect (p < 0.01), and a significant frequency main effect (p < 0.01). The major findings were that sEMG and RPE increased with the acceleration of the vibration; moreover, the increments of sEMG were highly correlated with RPE. The results of this study suggest that using the RPE method after each exercise would allow exercise and health professionals to assess the intensity levels that correspond to the level of the vibratory program in older adults.  相似文献   

20.
Electron microscopic study of femoral arteries of white rats exposed to prolonged general vibration at a frequency of 100 Hz with an amplitude of 0.5-0.7 mm has been performed. Light and dark smooth muscle cells, as well as unchanged cells have been found in the vascular media of experimental animals. Light cells are swollen with destroyed myofilaments and great number of microtubules in cytoplasm. Dark cells are characterized by coagulation necrosis and melting of myofilaments. Vibration was shown to cause marked structural changes in smooth muscle cells mitochondria: destruction of internal and external membranes, increasing matrix osmophilia or swelling of mitochondria accompanied by crista fragmentation, as well as matrix clarification and disappearance. Morphometric analysis indicates a considerably decreased energy production by smooth muscle cell mitochondria. It has been concluded that vibrations have a damaging effect on medial smooth muscle cells of the femoral artery in the experimental animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号