首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Philip D. Bragg  Neil R. Hackett 《BBA》1983,725(1):168-177
Escherichia coli grown anaerobically with trimethylamine N-oxide (TMAO) as a terminal electron acceptor develops a new cytochrome pathway in addition to the aerobic respiratory pathways which are still formed. Formate, NADH, and possibly other substrates derived from glucose, supply electrons to this pathway. Cytochromes with α-absorption peaks at about 548, 552, 554 and 557 nm are rapidly reoxidized by TMAO in a reaction which is not inhibited by 2-n-heptyl-4-hydroxyquinoneN-oxide. CuSO4 inhibits the reoxidation by TMAO of the first two of these cytochromes. This suggests that the pathway of electron transfer leading to the reduction of TMAO is: substrates → cytochromes 548,552 → cytochromes 554,557 → trimethylamine-N-oxide reductase → TMAO. These cytochromes, but not those of the aerobic respiratory pathways, are reoxidized by the membrane-impermeant oxidant ammonium persulfate in intact cells. This suggests that the cytochromes of the TMAO reduction pathway and / or trimethylamine-N-oxide reductase are situated at the periplasmic surface of the cytoplasmic membrane of E. coli.  相似文献   

2.
The cytochromes of membranes of the cydA mutant Escherichia coli GR19N grown on a proline-amino acid medium were examined. Reduced minus oxidized difference spectra (including fourth-order finite difference spectra) showed that cytochromes with absorption maxima at 554-555, 556-557, 560-561.5 and 563.5-564.5 nm were present. In addition, there were two components with absorption maxima at 548.5 and 551.5 nm which made a minor contribution to the alpha-band absorbance. These were not examined further. Two pools within the cytochromes were detected. One pool, which was reduced rapidly by the substrates NADH, formate and succinate, consisted of cytochromes of the cytochrome o complex. These cytochromes had absorption maxima at 555, 557 and 563.5 nm. In addition, the low-potential cytochrome associated with formate dehydrogenase was reduced rapidly by formate, and a component absorbing at 560-561.5 nm was also present in this pool. The second pool of cytochromes was reduced more slowly by substrate, although the rate was accelerated greatly in the presence of the electron mediator phenazine methosulfate. These cytochromes absorbed maximally at about 556.5 nm. A portion of the cytochrome in this pool was reoxidized by fumarate. This cytochrome may be a component of the fumarate reductase pathway, since the membranes showed high NADH-fumarate reductase activity. The respiratory chain inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide appeared to act at two sites. One site of inhibition was between the dehydrogenases and the cytochromes. A second site of inhibition was located in the cytochrome o complex between cytochrome b-564 and oxygen.  相似文献   

3.
Erythrobacter sp. OCh 114, an aerobic photosynthetic bacterium, had trimethylamine N-oxide (TMAO) reductase activity, which increased when the culture medium contained TMAO. The reductase was located in the periplasm. The bacteria grew anaerobically in the presence of TMAO. These results suggested that Erythrobacter OCh 114 has the ability to reduce TMAO through the respiratory chain. The TMAO respiration system of this organism was different from those of facultative purple photosynthetic bacteria in two respects: (a) TMAO reductase did not have activity to reduce dimethyl sulfoxide and (b) soluble c-type cytochrome, cytochrome c551, and cytochrome b-c1 complex appeared to be involved. The photochemical activity, which is usually inoperative in the anaerobic cell suspension, was restored by TMAO, suggesting that the photosynthesis and the TMAO respiration share a common electron transfer chain.  相似文献   

4.
Redox titration has been coupled to spectroscopic techniques, enzyme fractionation, and the use of mutants to examine the cytochrome composition of the membranes from cells grown aerobically and anaerobically with nitrate. A combination of techniques was found to be necessary to resolve the cytochromes. At least six b-type cytochromes were present. Besides cytochromes bfdh and bnr, components of the formate dehydrogenase-nitrate reductase pathway, cytochromes b556, b555, b562, and o, characteristic of aerobic respiratory pathways, were present. The midpoint oxidation-reduction potentials of the aerobic b-type cytochromes suggested that the sequence of electron transfer is: cytochrome b556 leads to b555 leads to b562 leads to O2.  相似文献   

5.
Shewanella putrefaciens can use trimethylamine oxide (TMAO) as electron acceptor under anoxic conditions. The associated cytochromes induced during growth under various respiratory conditions have been separated by liquid chromatography (DEAE Sepharose CL6b) and SDS-PAGE and characterized spectrophotometrically and by redox potentiometry. Two major low potential cytochromes and at least three minor low potential cytochromes, likely to be involved in TMAO reduction, were found. No cytochrome specific for TMAO reductase was found.  相似文献   

6.
Trimethylamine N-oxide (TMAO) reductase was purified from an aerobic photosynthetic bacterium Roseobacter denitrificans. The enzyme was purified from cell-free extract by ammonium sulfate fractionation, DEAE ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme was composed of two identical subunits with molecular weight of 90,000, as identified by SDS-polyacrylamide gel electrophoresis, containing heme c and a molybdenum cofactor. The molecular weight of the native enzyme determined by gel filtration was 172,000. The midpoint redox potential of heme c was +200 mV at pH 7.5. Absorption maxima appeared at 418,524, and 554 nm in the reduced state and 410 nm in the oxidized state. The enzyme reduced TMAO, nicotine acid N-oxide, picoline N-oxide, hydroxylamine, and bromate, but not dimethyl sulfoxide, methionine sulfoxide, chlorate, nitrate, or thiosulfate. Cytochrome c2 served as a direct electron donor. It probably catalyzes the electron transfer from cytochrome b-c1 complex to TMAO reductase. Cytochrome c552, another soluble low-molecular-weight cytochrome of this bacterium, also donated electrons directly to TMAO reductase.  相似文献   

7.
D.L. Knook  J.Van&#x;t Riet  R.J. Planta 《BBA》1973,292(1):237-245
1. The participation of cytochromes in the membrane-bound, nitrate and oxygen respiratory systems of Klebsiella (Aerobacter) aerogenes has been investigated. The membrane preparations contained the NADH, succinate, lactate and formate oxidase systems, and in addition a high respiratory nitrate reductase activity.2. Difference spectra indicated the presence of cytochromes b, a1, d, and o. Cytochromes of the c-type could not be detected in these membranes. Both cytochrome b content and respiratory nitrate reductase activity were the highest in bacteria grown anaerobically in the presence of nitrate.3. Cytochrome b was the only cytochrome which, after being reduced by NADH, could be partially reoxidized anaerobically in the presence of nitrate. Furthermore, nitrate caused a lower aerobic steady state reduction only of cytochrome b.4. NADH oxidase and NADH-linked respiratory nitrate reductase activities were both inhibited by antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide and KCN. NADH oxidase activity was selectively inhibited by CO, while azide was found to inhibit only the respiratory nitrate reductase. In the presence of azide, nitrate did not affect the level of reduction of cytochrome b.5. The evidence presented suggests that cytochrome b is a carrier in the electron transport systems to both nitrate and oxygen; from cytochrome b branching occurs, with one branch linked to the respiratory nitrate reductase and one branch linked to oxidase systems, containing the cytochromes a1, d and o.  相似文献   

8.
The trimethylamine N-oxide (TMAO) reductase of Escherichia coli is a molybdoenzyme that catalyses the reduction of the TMAO to trimethylamine (TMA) with a redox potential of +130 mV. We have successfully substituted the molybdenum with tungsten and obtained an active tungsto-TMAO reductase. Kinetic studies revealed that the catalytic efficiency of the tungsto-substituted TMAO reductase (W-TorA) was increased significantly (twofold), although a decrease of about 50% in its kcat was found compared with the molybdo-TMAO reductase (Mo-TorA). W-TorA is more sensitive to high pH, is less sensitive to high NaCl concentration and is more heat resistant than Mo-TorA. Most importantly, the W-TorA becomes capable of reducing sulphoxides and supports the anaerobic growth of a bacterial host on these substrates. The evolutionary implication and mechanistic significance of the tungsten substitution are discussed.  相似文献   

9.
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.  相似文献   

10.
11.
Deletion mutants of Escherichia coli lacking dimethyl sulfoxide (DMSO) reductase activity and consequently unable to utilize DMSO as an electron acceptor for anaerobic growth have been isolated. These mutants retained the ability to use trimethylamine N-oxide (TMAO) as an electron acceptor and the TMAO reductase activity was found to be unaltered. Heating the cell-free extract of the wild-type strain at 70 degrees C for 15 min selectively inactivated the DMSO reductase activity while the TMAO reductase activity remained unchanged for at least 1 h.  相似文献   

12.
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system.  相似文献   

13.
Shewanella oneidensis is a metal reducer that can use several terminal electron acceptors for anaerobic respiration, including fumarate, nitrate, dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), nitrite, and insoluble iron and manganese oxides. Two S. oneidensis mutants, SR-558 and SR-559, with Tn5 insertions in crp, were isolated and analyzed. Both mutants were deficient in Fe(III) and Mn(IV) reduction. They were also deficient in anaerobic growth with, and reduction of, nitrate, fumarate, and DMSO. Although nitrite reductase activity was not affected by the crp mutation, the mutants failed to grow with nitrite as a terminal electron acceptor. This growth deficiency may be due to the observed loss of cytochromes c in the mutants. In contrast, TMAO reduction and growth were not affected by loss of cyclic AMP (cAMP) receptor protein (CRP). Fumarate and Fe(III) reductase activities were induced in rich medium by the addition of cAMP to aerobically growing wild-type S. oneidensis. These results indicate that CRP and cAMP play a role in the regulation of anaerobic respiration, in addition to their known roles in catabolite repression and carbon source utilization in other bacteria.  相似文献   

14.
E Stenberg  E Ring    A R Strm 《Applied microbiology》1984,47(5):1090-1095
Alteromonas putrefaciens NCMB 1735 required the presence of NaCl for anaerobic growth with serine, cysteine, and formate as substrate and trimethylamine oxide ( TMAO ) as external electron acceptor. When lactate was substrate, the organism grew equally well in the absence of NaCl. Anaerobic uptake of glutamate, aspartate, serine, cysteine, and lactate in resting cells was strongly stimulated with NaCl, and cytoplasmic membrane vesicles energized by electron transfer from formate to TMAO displayed active Na+-dependent uptake of serine. The data suggested that participation in transport processes was the only vital function of Na+ in A. putrefaciens. Formate- and TMAO -dependent anaerobic serine uptake in vesicles was sensitive to the protonophore carbonyl cyanide m-chlorophenyl-hydrazone and the ionophores valinomycin and gramicidin. Transport-active vesicles contained cytochromes of b and c type, and both serine uptake and TMAO reduction with formate were inhibited with the electron transfer inhibitor 2-heptyl-4-hydroxyquinoline N-oxide. Thus, reduction of TMAO to trimethylamine in A. putrefaciens appeared to be coupled with a chemiosmotic mechanism of energy conversion.  相似文献   

15.
Reduction of trimethylamine N-oxide (E'(0(TMAO/TMA)) = +130 mV) in Escherichia coli is carried out by the Tor system, an electron transfer chain encoded by the torCAD operon and made up of the periplasmic terminal reductase TorA and the membrane-anchored pentahemic c-type cytochrome TorC. Although the role of TorA in the reduction of trimethylamine N-oxide (TMAO) has been clearly established, no direct evidence for TorC involvement has been presented. TorC belongs to the NirT/NapC c-type cytochrome family based on homologies of its N-terminal tetrahemic domain (TorC(N)) to the cytochromes of this family, but TorC contains a C-terminal extension (TorC(C)) with an additional heme-binding site. In this study, we show that both domains are required for the anaerobic bacterial growth with TMAO. The intact TorC protein and its two domains, TorC(N) and TorC(C), were produced independently and purified for a biochemical characterization. The reduced form of TorC exhibited visible absorption maxima at 552, 523, and 417 nm. Mediated redox potentiometry of the heme centers of the purified components identified two negative midpoint potentials (-177 and -98 mV) localized in the tetrahemic TorC(N) and one positive midpoint potential (+120 mV) in the monohemic TorC(C). In agreement with these values, the in vitro reconstitution of electron transfer between TorC, TorC(N), or TorC(C) and TorA showed that only TorC and TorC(C) were capable of electron transfer to TorA. Surprisingly, interaction studies revealed that only TorC and TorC(N) strongly bind TorA. Therefore, TorC(C) directly transfers electrons to TorA, whereas TorC(N), which probably receives electrons from the menaquinone pool, is involved in both the electron transfer to TorC(C) and the binding to TorA.  相似文献   

16.
17.
18.
InEscherichia coli, several terminal reductases catalyze the reduction of S- and N-oxide compounds. We have used mutants missing either the constitutive dimethylsulfoxide (DMSO) reductase,dmsABC, and/or the inducible trimethylamine N-oxide (TMAO) reductase,torA, to define the roles of each reductase. These studies indicated that the constitutive DMSO reductase can sustain growth on DMSO, TMAO, methionine sulfoxide (MetSO), and other N-oxide compounds. Only one inducible TMAO reductase is expressed inE. coli, and this enzyme sustains growth on TMAO but not DMSO or MetSO. Characterization of atorA , dmsdouble mutant revealed that adenosine N-oxide (ANO) reductase is specifically required for anaerobic respiration on ANO in this mutant.  相似文献   

19.
The bisZ gene of Escherichia coli was previously described as encoding a minor biotin sulfoxide (BSO) reductase in addition to the main cytoplasmic BSO reductase, BisC. In this study, bisZ has been renamed torZ based on the findings that (i) the torZ gene product, TorZ, is able to reduce trimethylamine N-oxide (TMAO) more efficiently than BSO; (ii) although TorZ is more homologous to BisC than to the TMAO reductase TorA (63 and 42% identity, respectively), it is located mainly in the periplasm as is TorA; (iii) torZ belongs to the torYZ operon, and the first gene, torY (formerly yecK), encodes a pentahemic c-type cytochrome homologous to the TorC cytochrome of the TorCAD respiratory system. Furthermore, the torYZ operon encodes a third TMAO respiratory system, with catalytic properties that are clearly different from those of the TorCAD and the DmsABC systems. The torYZ and the torCAD operons may have diverged from a common ancestor, but, surprisingly, no torD homologue is found in the sequences around torYZ. Moreover, the torYZ operon is expressed at very low levels under the conditions tested, and, in contrast to torCAD, it is not induced by TMAO or dimethyl sulfoxide.  相似文献   

20.
A method is described for the preparation of mitochondria from the slime mould Physarum polycephalum; the mitochondria were not coupled. P. polycephalum mitochondria oxidized added NADH via a rotenone-insensitive pathway, but the oxidation of malate plus glutamate was rotenone sensitive; both of these substrates reduced much less cytochrome b than did succinate, in both aerobic and anaerobic steady states. Spectroscopy at 77 degrees K separated three absorption maxima in the alpha-band region, at 560nm, 553nm and one at 547nm due to cytochrome c. The absorption at 553nm was increased in the aerobic steady state by the addition of 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that it was due to a b-type cytochrome. All three absorption maxima appeared in the aerobic steady state after the addition of a range of substrates. The respiratory activity with different substrates and the response to inhibitors of respiration were similar to those previously described for fungus mitochondria (Weiss et al., 1970; Erickson & Ashworth, 1969). When grown under conditions of haem limitation the mitochondria contained a lower concentration of cytochromes than normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号