首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

2.
Arid and semiarid ecosystems play a significant role in regulating global carbon cycling, yet our understanding of the controls over the dominant pathways of dryland CO2 exchange remains poor. Substantial amounts of dryland soil are not covered by vascular plants and this patchiness in cover has important implications for spatial patterns and controls of carbon cycling. Spatial variation in soil respiration has been attributed to variation in soil moisture, temperature, nutrients and rhizodeposition, while seasonal patterns have been attributed to changes in moisture, temperature and photosynthetic inputs belowground. To characterize how controls over respiration vary spatially and temporally in a dryland ecosystem and to concurrently explore multiple potential controls, we estimated whole plant net photosynthesis (Anet) and soil respiration at four distances from the plant base, as well as corresponding fine root biomass and soil carbon and nitrogen pools, four times during a growing season. To determine if the controls vary between different plant functional types for Colorado Plateau species, measurements were made on the C4 shrub, Atriplex confertifolia, and C3 grass, Achnatherum hymenoides. Soil respiration declined throughout the growing season and diminished with distance from the plant base, though variations in both were much smaller than expected. The strongest relationship was between soil respiration and soil moisture. Soil respiration was correlated with whole plant Anet, although the relationship varied between species and distance from plant base. In the especially dry year of this study we did not observe any consistent correlations between soil respiration and soil carbon or nitrogen pools. Our findings suggest that abiotic factors, especially soil moisture, strongly regulate the response of soil respiration to biotic factors and soil carbon and nitrogen pools in dryland communities and, at least in dry years, may override expected spatial and seasonal patterns.  相似文献   

3.
Leaf respiration and photosynthesis will respond differently to an increase in temperature during night, which can be more relevant in sensitive ecosystems such as Antarctica. We postulate that the plant species able to colonize the Antarctic Peninsula – Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. – are able to acclimate their foliar respiration and to maintain photosynthesis under nocturnal warming to sustain a positive foliar carbon balance. We conducted a laboratory experiment to evaluate the effect of time of day (day and night) and nocturnal warming on dark respiration. Short (E0 and Q10) and long‐term acclimation of respiration, leaf carbohydrates, photosynthesis (Asat) and foliar carbon balance (R/A) were evaluated. The results suggest that the two species have differential thermal acclimation respiration, where D. antarctica showed more thermosensitivity to short‐term changes in temperature than C. quitensis. Experimental nocturnal warming affected respiration at daytime differentially between the two species, with a significant increase of R10 and Asat in D. antarctica, while no changes on respiration were observed in C. quitensis. Long thermal treatments of the plants indicated that nocturnal but not diurnal respiration could acclimate in both species, and to a greater extent in C. quitensis. Non‐structural carbohydrates were related with respiration in C. quitensis but not in D. antarctica, suggesting that respiration in the former species is likely controlled by total soluble sugars and starch during day and night, respectively. Finally, foliar carbon balance was differentially improved under warming conditions in Antarctic plants by different mechanisms, with C. quitensis deploying respiratory acclimation, while D. antarctica increased its Asat.  相似文献   

4.
We integrated soil models with an established ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to investigate the influence of soil processes on modelled values of soil CO2 fluxes (R Soil). Model parameters were determined from literature values and a data assimilation routine that used a 7-year record of the net ecosystem exchange of CO2 and environmental variables collected at a high-elevation subalpine forest (the Niwot Ridge AmeriFlux site). These soil models were subsequently evaluated in how they estimated the seasonal contribution of R Soil to total ecosystem respiration (TER) and the seasonal contribution of root respiration (R Root) to R Soil. Additionally, these soil models were compared to data assimilation output of linear models of soil heterotrophic respiration. Explicit modelling of root dynamics led to better agreement with literature values of the contribution of R Soil to TER. Estimates of R Soil/TER when root dynamics were considered ranged from 0.3 to 0.6; without modelling root biomass dynamics these values were 0.1–0.3. Hence, we conclude that modelling of root biomass dynamics is critically important to model the R Soil/TER ratio correctly. When soil heterotrophic respiration was dependent on linear functions of temperature and moisture independent of soil carbon pool size, worse model-data fits were produced. Adding additional complexity to the soil pool marginally improved the model-data fit from the base model, but issues remained. The soil models were not successful in modelling R Root/R Soil. This is partially attributable to estimated turnover parameters of soil carbon pools not agreeing with expected values from literature and being poorly constrained by the parameter estimation routine. We conclude that net ecosystem exchange of CO2 alone cannot constrain specific rhizospheric and microbial components of soil respiration. Reasons for this include inability of the data assimilation routine to constrain soil parameters using ecosystem CO2 flux measurements and not considering the effect of other resource limitations (for example, nitrogen) on the microbe biomass. Future data assimilation studies with these models should include ecosystem-scale measurements of R Soil in the parameter estimation routine and experimentally determine soil model parameters not constrained by the parameter estimation routine.  相似文献   

5.
马进鹏  庞丹波  陈林  万红云  李学斌 《生态学报》2023,43(11):4722-4733
土壤呼吸作为陆地生态系统碳循环的重要组成部分,对研究干旱半干旱区荒漠草原碳平衡具有重要意义。选取荒漠草原4种典型植物枯落物进行裂区实验,设置氮、水添加实验处理,探讨不同的枯落物地表,短期氮、水处理对荒漠草原土壤呼吸的影响。结果表明,土壤呼吸日动态呈单峰曲线,最大值出现在10:00—12:00。相同处理间不同枯落物地表和相同枯落物地表不同处理间土壤呼吸在白天和夜间均有差异(P<0.05)。枯落物对土壤呼吸贡献表明,短期不做任何处理的枯落物对土壤呼吸的贡献最大,贡献率高达68%—89%。多因素方差分析显示,氮及氮和水交互作用对土壤呼吸的影响显著。呼吸在降水处理间存在显著差异(P<0.05),表现为减雨(P3)>增雨(P2)>正常(P1);呼吸在氮素处理间存在极显著差异(P<0.001),表现为添氮(N1)>不添氮(N0)。土壤呼吸与土壤温度、土壤湿度拟合发现,短期的氮、水处理下土壤温度与土壤呼吸显著相关(P<0.05),可解释呼吸变化的50.3%—69.9%;土壤湿度对呼吸影响不显著(P>0.05),温度、湿度的交互作用对土壤呼吸的影响显著(...  相似文献   

6.
The future of the land carbon sink is a significant uncertainty in global change projections. Here, key controls on global terrestrial carbon storage are examined using a simple model of vegetation and soil. Equilibrium solutions are derived as a function of atmospheric CO2 and global temperature, these environmental variables are then linked in an idealized global change trajectory, and the lag between the dynamic and equilibrium solutions is derived for different linear rates of increase in atmospheric CO2. Terrestrial carbon storage is departing significantly from equilibrium because CO2 and temperature are increasing on a similar timescale to ecosystem change, and the lag is found to be proportional to the rate of forcing. Thus peak sizes of the land carbon sink, and any future land carbon source, are proportional to the rate of increase of CO2. A switch from a land carbon sink to a source occurs at a higher CO2 and temperature under more rapid forcing. The effects of parameter uncertainty in temperature sensitivities of photosynthesis, plant respiration and soil respiration, and structural uncertainty through the effect of fixing the ratio of plant respiration to photosynthesis are explored. In each case, the CO2 fertilization effect on photosynthesis is constrained to reproduce the 1990 atmospheric CO2 concentration within a closed global model. New literature compilations are presented for the temperature sensitivities of plant and soil respiration. A lower limit, Q10=1.29, for soil respiration significantly increases future land carbon storage. An upper limit, Q10=3.63, for soil respiration underpredicts the increase in carbon storage since the Last Glacial Maximum. Fixing the ratio of plant respiration to photosynthesis (R/P) at 0.5 generates the largest and most persistent land carbon sink, followed by the weakest land carbon source.  相似文献   

7.
The root respiration rate often shows an exponential or a linear relationship with temperature under laboratory conditions. However, under intact conditions in the field, the root respiration rates of some tree species decreased around midday despite an increment of the root temperature (Bekku et al. 2009). To clarify the cause of midday depression, we examined the relationships between the intact root respiration and parameters of leaf gas exchange through the simultaneous field measurement of the gas exchange in the leaf and root of Quercus crispula and Chamaecyparis obtusa, which are canopy trees. There were no significant relationships between the root respiration rates (R r) and the parameters of leaf gas exchange in the field. However, in C. obtusa, the relationships between R r and the transpiration rates (E) at 1 h before the measurement of R r were fitted by logarithmic function with a determination coefficient of 0.60–0.89. In the light-manipulation experiments using saplings, R r had significant positive correlations with E at 20 min before the measurement of R r, root temperature (T r), and the photosynthesis (P n) at 20 min before the measurement of R r. We examined which factor, P n or E, affects the root respiration rate through a manipulation experiment using a growth chamber regulating the ambient CO2 concentration and relative humidity independently under constant air temperature and photosynthetic photon flux density. As a result, the root respiration rates changed corresponding to E and not P n. These results suggest that the root respiration rate of trees changes significantly in the daytime and is affected by the leaf transpiration rate as well as the temperature.  相似文献   

8.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

9.
全球陆地生态系统光合作用与呼吸作用的温度敏感性   总被引:3,自引:0,他引:3  
游桂莹  张志渊  张仁铎 《生态学报》2018,38(23):8392-8399
基于全球647套通量数据,定量分析了全球尺度下生态系统光合作用和呼吸作用的温度敏感性(Q10)随纬度、气候和植被的分布规律。结果表明:在全球尺度下,光合作用和呼吸过程的温度敏感性(Q10,G和Q10,R)都随纬度的升高而增加,其中Q10,G和Q10,R的均值分别为3.99±0.21和2.28±0.074。除热带多树草原、常绿落叶林外,Q10,G均大于Q10,R值。不同植被类型的温度敏感性存在显著性差异,表现为:针叶林阔叶林;落叶林常绿林,其中生态系统的季节性变异是造成差异的主要原因。当植被类型和纬度区域共同影响Q10值时,植被类型对Q10值的总变异贡献更大。气候类型对Q10,G和Q10,R都有显著影响。在气候带上,干旱带的Q10,G最小,而冷温带的Q10,G最高。不同气候类型下(除温带草原气候外)的Q10,G都大于Q10,R。在极端条件下,温度可能不在是主导因素,而水分对温度敏感性的影响不可忽略,今后的研究需要更多的关注生态系统温度敏感性对水分变化的响应。  相似文献   

10.
We measured net ecosystem CO2 flux (F n) and ecosystem respiration (R E), and estimated gross ecosystem photosynthesis (P g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest ecosystems with a net ecosystem carbon gain during the second year of 293 ± 11 g C m−2 year−1 showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem respiration from October to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important in the annual carbon cycle of the ecosystem. Model fit of R E of a classic, first-order exponential equation related to temperature (second year; R 2 = 0.65) was improved when the P g rate was incorporated into the model (second year; R 2 = 0.79), suggesting that daytime R E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R E decreased from apparent Q 10 values of 3.3 to 3.9 by the classic equation to a more realistic Q 10 of 2.5 by the modified model. The model introduces R photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated carbon dioxide flux at 0°C and 35% at 20°C implying a high sensitivity of respiration to photosynthesis during summer. The simple model provides an easily applied, non-intrusive tool for investigating seasonal trends in the relationship between ecosystem carbon sequestration and respiration.  相似文献   

11.
树干呼吸(E_s)是森林生态系统碳循环过程的重要组成部分,深入理解树干呼吸过程对未来气候变暖的响应及反馈机制有助于更加精确地估算森林生态系统碳储量。为揭示毛白杨树干呼吸及其温度敏感性的昼夜变化和季节动态规律,利用Li-Cor6400便携式光合作用测定系统及其配套使用的土壤呼吸测量气室(LI-6400-09)对冀南平原区毛白杨的树干呼吸和树干温度实施为期1年的连续监测。结果表明:(1)在生长季,毛白杨树干呼吸与树干温度之间在晚上呈现正相关的关系(R~2=0.88);相反,两者在白天为负相关的关系(R~2=0.96)。(2)整个观测期内,毛白杨树干呼吸和树干温度均呈现"钟形"的变化曲线,树干呼吸与树干温度之间存在着较好的指数函数关系(R~2=0.93),且树干呼吸的温度敏感性系数(Q_(10))为2.62;不同季节毛白杨树干呼吸的Q_(10)存在差异,生长季的Q_(10)(1.95)明显低于非生长季(3.00),表明生长呼吸和维持呼吸对温度的响应也并不相同。(3)温度矫正后的毛白杨树干呼吸(R_(15))在昼夜和季节尺度上均存在明显的变异,即夜晚的R_(15)显著高于白天(P0.01),生长季的R_(15)明显高于非生长季(P0.05);树干可溶性糖含量与生长季的R_(15)存在较好的相关性(R~2=0.52),而非生长季的R_(15)却主要受到树干淀粉含量的影响。研究结果表明,在生长季,毛白杨树干呼吸的在日变化主要受到温度的影响,而在季节尺度上Q_(10)的变异则与树干呼吸中维持呼吸所占比例及树干中非结构性碳水化合物(可溶性糖和淀粉)的含量及类型紧密相关。  相似文献   

12.
The Pattern of Respiration Rate in the Vegetative Barley Plant   总被引:3,自引:0,他引:3  
FARRAR  J. F. 《Annals of botany》1980,46(1):71-76
In two experiments with young barley plants, respiration rate,carbohydrate content and growth rate of the whole plant weremeasured. When 18-day-old plants were darkened the rate of respirationand the levels of soluble carbohydrate fell in parallel overthe following 30 h. When the dark respiration rate of plantswas followed from 7 to 24 days respiration rate and solublecarbohydrate levels did not change together, nor did the respirationrate (R) follow the empirical relationship with photosynthesis(P) and d. wt (W) R = aW + bP, suggested by McCree. Hordeum distichum L. (Lam), barley, respiration, carbohydrate content  相似文献   

13.
Plant respiration is an important contributor to the proposed positive global carbon‐cycle feedback to climate change. However, as a major component, leaf mitochondrial (‘dark’) respiration (Rd) differs among species adapted to contrasting environments and is known to acclimate to sustained changes in temperature. No accepted theory explains these phenomena or predicts its magnitude. Here we propose that the acclimation of Rd follows an optimal behaviour related to the need to maintain long‐term average photosynthetic capacity (Vcmax) so that available environmental resources can be most efficiently used for photosynthesis. To test this hypothesis, we extend photosynthetic co‐ordination theory to predict the acclimation of Rd to growth temperature via a link to Vcmax, and compare predictions to a global set of measurements from 112 sites spanning all terrestrial biomes. This extended co‐ordination theory predicts that field‐measured Rd and Vcmax accessed at growth temperature (Rd,tg and Vcmax,tg) should increase by 3.7% and 5.5% per degree increase in growth temperature. These acclimated responses to growth temperature are less steep than the corresponding instantaneous responses, which increase 8.1% and 9.9% per degree of measurement temperature for Rd and Vcmax respectively. Data‐fitted responses proof indistinguishable from the values predicted by our theory, and smaller than the instantaneous responses. Theory and data are also shown to agree that the basal rates of both Rd and Vcmax assessed at 25°C (Rd,25 and Vcmax,25) decline by ~4.4% per degree increase in growth temperature. These results provide a parsimonious general theory for Rd acclimation to temperature that is simpler—and potentially more reliable—than the plant functional type‐based leaf respiration schemes currently employed in most ecosystem and land‐surface models.  相似文献   

14.
The effect of temperature regime on growth and other morphological characteristics of barley plants (Hordeum distichum L., cv. Andrei) as dependent on the level of mineral nutrition was investigated in a controlled experiment. Plants were raised hydroponically at a high (0.22 g/(g day)) and low (0.05 g/(g day)) relative rates of the addition of mineral nutrients (R A). Mineral nutrients were daily added to the nutrient solutions in exponentially increased amounts to provide steady-state plant growth. At the optimum temperature regime (21/17°C, day/night), the plant relative growth rate (RGR) was proportional to the preset R A during the entire exponential period. Low R A led to a decrease in the nitrogen content in plants, plant weight, and respiratory activity, as well as to the increase in the relative root weight. Biomass accumulation at lowered temperature regime (13/8°C) and a high R A was 1.8-fold lower than at optimum temperature regime. Although under these conditions, the ratio of respiration to gross photosynthesis reduced threefold due to the decrease in the respiration rate, RGR of plants was equal to 0.11 ± 0.02 g/(g day), which was twice lower than the preset R A. These pointed to the decrease in plant ability to maintain a certain ratio of photosynthesis to respiration within a day. At a deficiency of mineral nutrition and low temperature, RGR reached the preset R A. Plants adapted to lowered temperature by a shift of the temperature optimum of their metabolism (heat production) to lower values. As a whole, a low variability of such growth parameters as RGR, C/N, and root to shoot weight ratio at different R A and lowered temperatures testified to the lessening of growth limitation by the mineral nutrition.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 384–391.Original Russian Text Copyright © 2005 by Garmash.  相似文献   

15.
Thirty-nine plant species including woody and herbaceous species grown in wet and warm subtropical regions were collected and classified into woody and herb functional groups. Net photosynthesis (P n) and dark respiration (R) were measured at constant 25°C under neither water nor nitrogen limited condition to assess whether the R/P n ratio was constant across different species and functional groups. Our results suggest that P n and R were highly skewed among the 39 species, ranging from 5 to 25 and 1 to 5 μmol m−2 s−1, respectively, while R/P n ratio was normally distributed at 0.1–0.3. Mean R/P n ratio was 0.19 for 39 species, and 0.20 and 0.18 for woody and herbs, respectively, showing no significant difference between the two groups. Leaf P n, R, and R/P n ratios exhibited large variations across 39 species while R/P n ratio in our subtropical species was considerably higher than other studies. Our results also indicated that the difference within each group was even larger than between the two groups. Based on the pooled data set at global scale, and considering R/P n ratios performance under a combination of wet and warm conditions, the mean R/P n ratio of 0.19 fell between the R/P n ratio of 0.23 under dry and warm conditions and the R/P n ratio of 0.07 under cold regardless of the precipitation conditions. The comparison with published data sets indicated significant effects of long-term precipitation and temperature on leaf R/P n ratios at global scale, and we found that the plants adapting to warm and wet climates including our thirty-nine species tend to have a lower R/P n ratio.  相似文献   

16.
Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.  相似文献   

17.
Summary An empirical model for predicting net photosynthesis (P N ) and dark respiration (R D ) in the field was developed and tested for Bouteloua gracilis (H.B.K.) Lag., the dominant C4 grass of the North American shortgrass prairie. P N is predicted as a function of soil water potential, canopy air temperature, irradiance, and plant age, while R D is expressed as a function of soil water potential and temperature. The model accounted for 85% of the variability in the data base used to estimate parameter values. Results of a validation test showed good agreement between observed and predicted P N rates, suggesting this approach would be useful as a submodel of a grassland ecosystem model.  相似文献   

18.
Some plant species show constant rates of respiration and photosynthesismeasured at their respective growth temperatures (temperaturehomeostasis), whereas others do not. However, it is unclearwhat species show such temperature homeostasis and what factorsaffect the temperature homeostasis. To analyze the inherentability of plants to acclimate respiration and photosynthesisto different growth temperatures, we examined 11 herbace-ouscrops with different cold tolerance. Leaf respiration (Rarea)and photosynthetic rate (Parea) under high light at 360 µll–1 CO2 concentrations were measured in plants grown at15 and 30°C. Cold-tolerant species showed a greater extentof temperature homeostasis of both Rarea and Parea than cold-sensitivespecies. The underlying mechanisms which caused differencesin the extent of temperature homeostasis were examined. Theextent of temperature homeostasis of Parea was not determinedby differences in leaf mass and nitrogen content per leaf area,but by differences in photosynthetic nitrogen use efficiency(PNUE). Moreover, differences in PNUE were due to differencesin the maximum catalytic rate of Rubisco, Rubisco contents andamounts of nitrogen invested in Rubisco. These findings indicatedthat the temperature homeostasis of photosynthesis was regulatedby various parameters. On the other hand, the extent of temperaturehomeostasis of Rarea was unrelated to the maximum activity ofthe respiratory enzyme (NAD-malic enzyme). The Rarea/Parea ratiowas maintained irrespective of the growth temperatures in allthe species, suggesting that the extent of temperature homeostasisof Rarea interacted with the photosynthetic rate and/or thehomeostasis of photosynthesis.  相似文献   

19.
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process‐level differences in acclimation capacity among plant types. We assessed short‐term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax), and foliar dark respiration (Rd) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C3 and C4), and climate of origin (tropical and nontropical) grown under fertilized, well‐watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C3 species tending to preferentially accelerate CO2‐limited photosynthetic processes and respiration and C4 species tending to preferentially accelerate light‐limited photosynthetic processes under warmer conditions. Rd acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. Rd acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting.  相似文献   

20.
The response of soil respiration (Rs) to temperature depends largely on the temporal and spatial scales of interest and how other environmental factors interact with this response. They are often represented by empirical exponential equations in many ecosystem analyses because of the difficulties in separating covarying environmental responses and in observing below ground processes. The objective of this study was to quantify a soil temperature‐independent component in Rs by examining the diel variation of an Rs time series measured in a temperate deciduous forest located at Oak Ridge, TN, USA between March and December 2003. By fitting 2 hourly, continuous automatic chamber measurements of CO2 efflux at the soil surface to a Q10 function to obtain the temperature‐dependent respiration (Rt) and plotting the diel cycles of Rt, Rs, and their difference (Ri), we found that an obvious temperature‐independent component exists in Rs during the growing season. The diel cycle of this component has a distinct day/night pattern and agrees well with diel variations in photosynthetically active radiation (PAR) and air temperature. Elevated canopy CO2 concentration resulted in similar patterns in the diel cycle of the temperature‐independent component but with different daily average rates in different stages of growing season. We speculate that photosynthesis of the stand is one of the main contributors to this temperature‐independent respiration component although more experiments are needed to draw a firm conclusion. We also found that despite its relatively small magnitude compared with the temperature‐dependent component, the diel variation in the temperature‐independent component can lead to significantly different estimates of the temperature sensitivity of soil respiration in the study forest. As a result, the common practice of using fitted temperature‐dependent function from night‐time measurements to extrapolate soil respiration during the daytime may underestimate daytime soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号