首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Delta-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.  相似文献   

2.
Fate determination in the mammalian forebrain, where mature phenotypes are often not achieved until postnatal stages of development, has been an elusive topic of study despite its relevance to neuropsychiatric disease. In the ventral telencephalon, major subgroups of cerebral cortical interneurons originate in the medial ganglionic eminence (MGE), where the signaling molecule sonic hedgehog (Shh) continues to be expressed during the period of neuronogenesis. To examine whether Shh regulates cortical interneuron specification, we studied mice harboring conditional mutations in Shh within the neural tube. At embryonic day 12.5, NestinCre:Shh(Fl/Fl) mutants have a relatively normal index of S-phase cells in the MGE, but many of these cells do not co-express the interneuron fate-determining gene Nkx2.1. This effect is reproduced by inhibiting Shh signaling in slice cultures, and the effect can be rescued in NestinCre:Shh(Fl/Fl) slices by the addition of exogenous Shh. By culturing MGE progenitors on a cortical feeder layer, cell fate analyses suggest that Shh signaling maintains Nkx2.1 expression and cortical interneuron fate determination by MGE progenitors. These results are corroborated by the examination of NestinCre:Shh(Fl/Fl) cortex at postnatal day 12, in which there is a dramatic reduction in cell profiles that express somatostatin or parvalbumin. By contrast, analyses of Dlx5/6Cre:Smoothened(Fl/Fl) mutant mice suggest that cell-autonomous hedgehog signaling is not crucial to the migration or differentiation of most cortical interneurons. These results combine in vitro and ex vivo analyses to link embryonic abnormalities in Shh signaling to postnatal alterations in cortical interneuron composition.  相似文献   

3.
The CSF-1 receptor (CSF-1R) regulates CNS microglial development. However, the localization and developmental roles of this receptor and its ligands, IL-34 and CSF-1, in the brain are poorly understood. Here we show that compared to wild type mice, CSF-1R-deficient (Csf1r-/-) mice have smaller brains of greater mass. They further exhibit an expansion of lateral ventricle size, an atrophy of the olfactory bulb and a failure of midline crossing of callosal axons. In brain, IL-34 exhibited a broader regional expression than CSF-1, mostly without overlap. Expression of IL-34, CSF-1 and the CSF-1R were maximal during early postnatal development. However, in contrast to the expression of its ligands, CSF-1R expression was very low in adult brain. Postnatal neocortical expression showed that CSF-1 was expressed in layer VI, whereas IL-34 was expressed in the meninges and layers II-V. The broader expression of IL-34 is consistent with its previously implicated role in microglial development. The differential expression of CSF-1R ligands, with respect to CSF-1R expression, could reflect their CSF-1R-independent signaling. Csf1r-/- mice displayed increased proliferation and apoptosis of neocortical progenitors and reduced differentiation of specific excitatory neuronal subtypes. Indeed, addition of CSF-1 or IL-34 to microglia-free, CSF-1R-expressing dorsal forebrain clonal cultures, suppressed progenitor self-renewal and enhanced neuronal differentiation. Consistent with a neural developmental role for the CSF-1R, ablation of the Csf1r gene in Nestin-positive neural progenitors led to a smaller brain size, an expanded neural progenitor pool and elevated cellular apoptosis in cortical forebrain. Thus our results also indicate novel roles for the CSF-1R in the regulation of corticogenesis.  相似文献   

4.
5.
Dominant mutations in presenilin1 (PS1) and presenilin2 (PS2) are a major cause of early-onset Alzheimer's disease. In this report we analyze the expression of the zebrafish presenilin1 (Psen1) and presenilin2 (Psen2) proteins during embryogenesis. We demonstrate that Psen1 and Psen2 holoproteins are relatively abundant in zebrafish embryos and are proteolytically processed. Psen1 is maternally expressed, whereas Psen2 is expressed at later stages during development. The Psen1 C-terminal proteolytic fragment (CTF) is present at varying levels during embryogenesis, indicating the existence of developmental control mechanisms regulating its production. We examine the codependency of Psen1 and Psen2 expression during early embryogenesis. Forced overexpression of psen2 increases expression of Psen2 holoprotein, but not the N-terminal fragment (NTF), indicating that levels of Psen2 NTF are strictly controlled. Overexpression of psen2 did not alter levels of Psen1 holoprotein, CTF, or higher molecular weight complexes. Reduction of Psen1 activity in zebrafish embryos produces similar developmental defects to those seen for loss of PS1 activity in knockout mice. The relevance of these results to previous work on presenilin protein regulation and function are discussed. Our work shows that zebrafish embryos are a valid and valuable system in which to study presenilin interactions, regulation, and function.  相似文献   

6.
7.
8.
Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients, the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg, which are involved in the activation of Fanconi pathway, in neural stem and progenitor cells during brain development and adult neurogenesis. Fanca(-/-) and fancg(-/-) mice presented with microcephalies and a decreased neuronal production in developing cortex and adult brain. Apoptosis of embryonic neural progenitors, but not that of postmitotic neurons, was increased in the neocortex of fanca(-/-) and fancg(-/-) mice and was correlated with chromosomal instability. In adult Fanconi mice, we showed a reduced proliferation of neural progenitor cells related to apoptosis and accentuated neural stem cells exhaustion with ageing. In addition, embryonic and adult Fanconi neural stem cells showed a reduced capacity to self-renew in vitro. Our study demonstrates a critical role for Fanconi pathway in neural stem and progenitor cells during developmental and adult neurogenesis.  相似文献   

9.
Presenilin1 (PSEN1) and presenilin2 (PSEN2) are involved in the processing of type-1 transmembrane proteins including the amyloid precursor protein (APP), Notch and several others. PSEN1 has been shown to be crucial for proteolytic cleavage of Notch in developing animal embryos. Mouse embryos lacking Psen1 function show disturbed neurogenesis and somite formation, resembling Notch pathway mutants. However, loss of Psen2 activity reveals only a minor phenotype. Zebrafish embryos are a valuable tool for analysis of the molecular genetic control of cell differentiation since endogenous gene expression can be modulated in subtle and complex ways to give a phenotypic readout. Using injection of morpholino antisense oligonucleotides to inhibit protein translation in zebrafish embryos, we show that reduced Psen2 activity decreases the number of melanocytes in the trunk but not in the cranial area at 2 days post fertilisation (dpf). Reduced Psen2 activity apparently reduces Notch signalling resulting in perturbed spinal neurogenin1 (neurog1) expression, neurogenesis and trunk and tail neural crest development. Similar effects are seen for reduced Psen1 activity. These results suggest that Psen2 plays a more prominent role in Notch signalling and embryo development in zebrafish than in mammals. Intriguingly, decreased Psen2 activity increases the number of Dorsal Longitudinal Ascending (DoLA) interneurons in the spinal cord while decreased Psen1 activity has no effect. However, the effect on DoLAs of reduced Psen2 can be ameliorated by Psen1 loss. The effects of changes in Psen2 activity on DoLA interneurons and other cells in zebrafish embryos provide bioassays for more detailed dissection of Psen2 function.  相似文献   

10.
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/-) mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.  相似文献   

11.
Qi Z  Bu X  Huang P  Zhang N  Han S  Fang L  Li J 《Neurochemical research》2007,32(9):1450-1459
Our previous studies have demonstrated that hypoxic precondition (HPC) increased membrane translocation of protein kinase C isoforms and decreased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the brain of mice. The goal of this study was to determine the involvement of p90 KD ribosomal S6 kinase (RSK) in cerebral HPC of mice. Using Western-blot analysis, we found that the levels of membrane/nuclear translocation, but not protein expression of RSK increased significantly in the frontal cortex and hippocampus of HPC mice. In addition, we found that the phosphorylation levels of RSK at the Ser227 site (a PDK1 phosphorylation site), but not at the Thr359/Ser363 sites (ERK1/2 phosphorylated sites) increased significantly in the brain of HPC mice. Similar results were confirmed by an immunostaining study of total RSK and phospho-Ser227 RSK. To further define the cellular populations to express phospho-Ser227 RSK, we found that the expression of phospho-Ser227 RSK co-localized with neurogranin, a neuron-specific marker, in cortex and hippocampus of HPC mice by using double-labeled immunofluorescent staining method. These results suggest that increased RSK membrane/nuclear translocation and PDK1 mediated neuron-specific phosphorylation of RSK at Ser227 might be involved in the development of cerebral HPC of mice.  相似文献   

12.
Nieto M  Schuurmans C  Britz O  Guillemot F 《Neuron》2001,29(2):401-413
We have addressed the role of the proneural bHLH genes Neurogenin2 (Ngn2) and Mash1 in the selection of neuronal and glial fates by neural stem cells. We show that mice mutant for both genes present severe defects in development of the cerebral cortex, including a reduction of neurogenesis and a premature and excessive generation of astrocytic precursors. An analysis of wild-type and mutant cortical progenitors in culture showed that a large fraction of Ngn2; Mash1 double-mutant progenitors failed to adopt a neuronal fate, instead remaining pluripotent or entering an astrocytic differentiation pathway. Together, these results demonstrate that proneural genes are involved in lineage restriction of cortical progenitors, promoting the acquisition of the neuronal fate and inhibiting the astrocytic fate.  相似文献   

13.
Presenilin-1 regulates neuronal differentiation during neurogenesis   总被引:10,自引:0,他引:10  
  相似文献   

14.
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.  相似文献   

15.
哺乳动物大脑皮层发育过程中,神经前体细胞精密有序地产生不同类型的子代细胞,如神经元和胶质细胞.特异转录因子精确激活或抑制性状决定基因在该过程中发挥决定性作用.最近的研究发现,长非编码RNA(lncRNA)在器官发育和疾病发生过程中发挥重要的基因调控功能,但lncRNA在大脑皮层发育过程中发挥的作用尚不清楚.本研究发现,在小鼠大脑皮层发育过程中,lncRNA-Tug1的表达量随着神经元的产生而显著上调.组织原位杂交显示,在皮层发育的几个关键时期,Tug1广泛分布于背侧前脑神经前体细胞及其子代细胞中.应用小鼠子宫内电穿孔技术敲低Tug1,发现Tug1对神经前体细胞的增殖或分化没有显著性影响.本研究构建了特异针对Tug1转录起始位点上游的TALEN表达载体,在培养的小鼠细胞里发现它们具有显著的切割效率.下一步将在Tug1转录起始位点5′端敲入多聚腺苷酸尾(Poly A)信号片段,以构建Tug1失活小鼠模型,研究Tug1在皮层发育过程中的作用,并探索高效建立lncRNA失活小鼠模型的途径.  相似文献   

16.
Despite increased neurogenic differentiation markers in the hippocampal CA1 in Alzheimer disease, neurons are not replaced in CA1 and the neocortex in the disease. beta-Amyloid (Abeta) might cause deterioration of the brain microenvironment supporting neurogenesis and the survival of immature neurons. To test this possibility, we examined whether Abeta alters the expression of cell fate determinants in cerebral cortical cultures and in an Alzheimer disease mouse model (PrP-APP(SW)). Up-regulation of Mash1 and down-regulation of Olig2 were found in cerebral cortical cultures treated with Abeta-(1-42). Mash1 was expressed in nestin-positive immature cells. The majority of Mash1-positive cells in untreated cortical culture co-expressed Olig2. Abeta increased the proportion of Olig2-negative/Mash1-positive cells. A decrease in Olig2+ cells was also observed in the cerebral cortex of adult PrP-APP(SW) mice. Cotransfection experiments with Mash1 cDNA and Olig2 siRNA revealed that overexpression of Mash1 in neurosphere cells retaining Olig2 expression enhanced neural differentiation but accelerated death of Olig2-depleted cells. Growth factor deprivation, which down-regulated Olig2, accelerated death of Mash1-overexpressing neurosphere cells. We conclude that cooperation between Mash1 and Olig2 is necessary for neural stem/progenitor cells to develop into fully mature neurons and that down-regulation of Olig2 by Abeta in Mash1-overexpressing cells switches the cell fate to death. Maintaining Olig2 expression in differentiating cells could have therapeutic potential.  相似文献   

17.
Neural RNA recognition motif (RRM)-type RNA-binding proteins play essential roles in neural development. To search for a new member of neural RRM-type RNA-binding protein, we screened rat cerebral expression library with polyclonal antibody against consensus RRM sequences. We have cloned and characterized a rat cDNA that belongs to RRM-type RNA-binding protein family, which we designate as drb1. Orthologs of drb1 exist in human and mouse. The predicted amino acid sequence reveals an open reading frame of 476 residues with a corresponding molecular mass of 53kDa and consists of four RNA-binding domains. drb1 gene is specifically expressed in fetal (E12, E16) rat brain and gradually reduced during development. In situ hybridization demonstrated neuron-specific signals in fetal rat brain. RNA-binding assay indicated that human Drb1 protein possesses binding preference on poly(C)RNA. These results indicate that Drb1 is a new member of neural RNA-binding proteins, which expresses under spatiotemporal control.  相似文献   

18.
To identify neuron-specific genes, we performed gene expression profiling, cDNA microarray and in silico ESTs (expressed sequence tags) analyses. We identified a human neuron-specific gene, KIAA1110 (homologue of rat synArfGEF (Po)), that is a member of the guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF). RT-PCR analysis showed that the KIAA1110 gene was expressed specifically in the brain among adult human tissues, whereas no apparent expression was observed in immature neural tissues/cells, such as fetal brain, glioma tissues/cells, and neural stem/precursor cells (NSPCs). The KIAA1110 protein was shown to be expressed in mature neurons but not in undifferentiated NSPCs. Immunohistochemical analysis also showed that KIAA1110 was expressed in neurons of the human adult cerebral cortex. Furthermore, the pull-down assay revealed that KIAA1110 has a GEF activity toward ARF1 that regulates transport along the secretion pathway. These results suggest that KIAA1110 is expressed specifically in mature neurons and may play an important role in the secretion pathway as a GEF for ARF1.  相似文献   

19.
Zou J  Zhou L  Du XX  Ji Y  Xu J  Tian J  Jiang W  Zou Y  Yu S  Gan L  Luo M  Yang Q  Cui Y  Yang W  Xia X  Chen M  Zhao X  Shen Y  Chen PY  Worley PF  Xiao B 《Developmental cell》2011,20(1):97-108
mTor kinase is involved in cell growth, proliferation, and differentiation. The roles of mTor activators, Rheb1 and Rheb2, have not been established in?vivo. Here, we report that Rheb1, but not Rheb2, is critical for embryonic survival and mTORC1 signaling. Embryonic deletion of Rheb1 in neural progenitor cells?abolishes mTORC1 signaling in developing brain and increases mTORC2 signaling. Remarkably, embryonic and early postnatal brain development appears grossly normal in these Rheb1f/f,Nes-cre mice with the notable exception of deficits of myelination. Conditional expression of Rheb1 transgene in neural progenitors increases mTORC1 activity and promotes myelination in the brain. In addition the Rheb1 transgene rescues mTORC1 signaling and hypomyelination in the Rheb1f/f,Nes-cre mice. Our study demonstrates that Rheb1 is essential for mTORC1 signaling and myelination in the brain, and suggests that mTORC1 signaling plays a role in selective cellular adaptations, rather than general cellular viability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号