首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hermansky-Pudlak Syndrome (HPS) is a genetically heterogeneous disorder of lysosome-related organelle biogenesis and is characterized by oculocutaneous albinism and a bleeding diathesis. Over the past decade, we screened 250 patients with HPS-like symptoms for mutations in the genes responsible for HPS subtypes 1-6. We identified 38 individuals with no functional mutations, and therefore, we analyzed all eight genes encoding the biogenesis of lysosome-related organelles complex-1 (BLOC-1) proteins in these individuals. Here, we describe the identification of a novel nonsense mutation in BLOC1S3 (HPS-8) in a 6-yr-old Iranian boy. This mutation caused nonsense-mediated decay of BLOC1S3 mRNA and destabilized the BLOC-1 complex. Our patient's melanocytes showed aberrant localization of TYRP1, with increased plasma membrane trafficking. These findings confirm a common cellular defect for HPS patients with defects in BLOC-1 subunits. We identified only two patients with BLOC-1 defects in our cohort, suggesting that other HPS genes remain to be identified.  相似文献   

2.
Hermansky-Pudlak syndrome (HPS) is a genetic disease of lysosome, melanosome, and granule biogenesis. Mutations of six different loci have been associated with HPS in humans, the most frequent of which are mutations of the HPS1 and HPS4 genes. Here, we show that the HPS1 and HPS4 proteins are components of two novel protein complexes involved in biogenesis of melanosome and lysosome-related organelles: biogenesis of lysosome-related organelles complex-(BLOC) 3 and BLOC-4. The phenotypes of Hps1-mutant (pale-ear; ep) and Hps4-mutant (light-ear; le) mice and humans are very similar, and cells from ep and le mice exhibit similar abnormalities of melanosome morphology. HPS1 protein is absent from ep-mutant cells, and HPS4 from le-mutant cells, but le-mutant cells also lack HPS1 protein. HPS4 protein seems to be necessary for stabilization of HPS1, and the HPS1 and HPS4 proteins co-immunoprecipitate, indicating that they are in a complex. HPS1 and HPS4 do not interact directly in a yeast two-hybrid system, although HPS4 interacts with itself. In a partially purified vesicular/organellar fraction, HPS1 and HPS4 are both components of a complex with a molecular mass of approximately 500 kDa, termed BLOC-3. Within BLOC-3, HPS1 and HPS4 are components of a discrete approximately 200-kDa module termed BLOC-4. In the cytosol, HPS1 (but not HPS4) is part of yet another complex, termed BLOC-5. We propose that the BLOC-3 and BLOC-4 HPS1.HPS4 complexes play a central role in trafficking cargo proteins to newly formed cytoplasmic organelles.  相似文献   

3.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1-deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.  相似文献   

4.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a ubiquitously expressed multisubunit protein complex required for the normal biogenesis of specialized organelles of the endosomal-lysosomal system, such as melanosomes and platelet dense granules. The complex is known to contain the coiled-coil-forming proteins, Pallidin, Muted, Cappuccino, and Dysbindin. The genes encoding these proteins are defective in inbred mouse strains that serve as models of Hermansky-Pudlak syndrome (HPS), a genetic disorder characterized by hypopigmentation and platelet storage pool deficiency. In addition, mutation of human Dysbindin causes HPS type 7. Here, we report the identification of another four subunits of the complex. One is Snapin, a coiled-coil-forming protein previously characterized as a binding partner of synaptosomal-associated proteins 25 and 23 and implicated in the regulation of membrane fusion events. The other three are previously uncharacterized proteins, which we named BLOC subunits 1, 2, and 3 (BLOS1, -2, and -3). Using specific antibodies to detect endogenous proteins from human and mouse cells, we found that Snapin, BLOS1, BLOS2, and BLOS3 co-immunoprecipitate, and co-fractionate upon size exclusion chromatography, with previously known BLOC-1 subunits. Furthermore, steady-state levels of the four proteins are significantly reduced in cells from pallid mice, which carry a mutation in Pallidin and display secondary loss of other BLOC-1 subunits. Yeast two-hybrid analyses suggest a network of binary interactions involving all of the previously known and newly identified subunits. Interestingly, the HPS mouse model strain, reduced pigmentation, carries a nonsense mutation in the gene encoding BLOS3. As judged from size exclusion chromatographic analyses, the reduced pigmentation mutation affects BLOC-1 assembly less severely than the pallid mutation. Mutations in the human genes encoding Snapin and the BLOS proteins could underlie novel forms of HPS.  相似文献   

5.
The adaptor protein (AP)-3 complex is a component of the cellular machinery that controls protein sorting from endosomes to lysosomes and specialized related organelles such as melanosomes. Mutations in an AP-3 subunit underlie a form of Hermansky-Pudlak syndrome (HPS), a disorder characterized by abnormalities in lysosome-related organelles. HPS in humans can also be caused by mutations in genes encoding subunits of three complexes of unclear function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2, and -3. Here, we report that BLOC-1 interacts physically and functionally with AP-3 to facilitate the trafficking of a known AP-3 cargo, CD63, and of tyrosinase-related protein 1 (Tyrp1), a melanosomal membrane protein previously thought to traffic only independently of AP-3. BLOC-1 also interacts with BLOC-2 to facilitate Tyrp1 trafficking by a mechanism apparently independent of AP-3 function. Both BLOC-1 and -2 localize mainly to early endosome-associated tubules as determined by immunoelectron microscopy. These findings support the idea that BLOC-1 and -2 represent hitherto unknown components of the endosomal protein trafficking machinery.  相似文献   

6.
Hermansky-Pudlak syndrome(HPS) is a recessive disorder with bleeding diathesis, which has been linked to platelet granule defects. Both platelet granules and endothelial Weibel-Palade bodies(WPBs)are members of lysosome-related organelles(LROs) whose formation is regulated by HPS protein associated complexes such as BLOC(biogenesis of lysosome-related organelles complex)-1,-2,-3, AP-3(adaptor protein complex-3) and HOPS(homotypic fusion and protein sorting complex). Von Willebrand factor(VWF) is critical to hemostasis, which is stored in a highly-multimerized form as tubules in the WPBs. In this study, we found the defective, but varying, release of VWF into plasma after desmopressin(DDAVP) stimulation in HPS1(BLOC-3 subunit), HPS6(BLOC-2 subunit), and HPS9(BLOC-1 subunit)deficient mice. In particular, VWF tubulation, a critical step in VWF maturation, was impaired in HPS6 deficient WPBs. This likely reflects a defective endothelium, contributing to the bleeding tendency in HPS mice or patients. The differentially defective regulated release of VWF in these HPS mouse models suggests the need for precise HPS genotyping before DDAVP administration to HPS patients.  相似文献   

7.
Hermansky–Pudlak syndrome (HPS) associates oculocutaneous albinism and systemic affections including platelet dense granules anomalies leading to bleeding diathesis and, depending on the form, pulmonary fibrosis, immunodeficiency, and/or granulomatous colitis. So far, 11 forms of autosomal recessive HPS caused by pathogenic variants in 11 different genes have been reported. We describe three HPS‐8 consanguineous families with different homozygous pathogenic variants in BLOC1S3 (NM_212550.3), one of which is novel. These comprise two deletions leading to a reading frameshift (c.385_403del, c.338_341del) and one in frame deletion (c.444_467del). All patients have moderate oculocutaneous albinism and bleeding diathesis, but other HPS symptoms are not described. One patient diagnosed with HPS‐8 suffered from lymphocyte‐predominant Hodgkin lymphoma. The mild severity of HPS‐8 is consistent with other HPS forms caused by variants in BLOC‐1 complex coding genes (HPS‐7, DTNBP1; HPS‐9, BLOC1S6, HPS‐11, BLOC1S5).  相似文献   

8.
Hermansky‐Pudlak syndrome (HPS) is a rare recessive disorder characterized by oculocutaneous albinism (OCA) or ocular albinism (OA), bleeding tendency, and other symptoms due to multiple defects in tissue‐specific lysosome‐related organelles. Ten HPS subtypes have been characterized with mutations in HPS1 to HPS10, which encode the subunits of BLOC‐1, ‐2, ‐3, and AP‐3. Using next‐generation sequencing (NGS), we have screened 100 hypopigmentation genes in OCA or OA patients and identified four HPS‐1, one HPS‐3, one HPS‐4, one HPS‐5, and three HPS‐6. The HPS‐4 case is the first report in the Chinese population. Among these 20 mutational alleles, 16 were previously unreported alleles (6 in HPS1, 1 in HPS3, 2 in HPS4, 2 in HPS5, and 5 in HPS6). BLOC‐2 and BLOC‐3 were destabilized due to the mutation of these HPS genes which are so far the only reported causative genes in Chinese HPS patients, in which HPS‐1 and HPS‐6 are the most common subtypes. The mutational spectrum of Chinese HPS is population specific.  相似文献   

9.
Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.  相似文献   

10.
Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.  相似文献   

11.
Biogenesis of lysosome‐related organelles complex (BLOC)‐1, ‐2 and ‐3 are three multi‐subunit protein complexes that are deficient in various forms of Hermansky‐Pudlak syndrome, a human disease characterized by abnormal formation of lysosome‐related organelles. Contrasting views have arisen on the evolutionary origin of these protein complexes. One view is that the BLOCs represent a recent evolutionary ‘acquisition’ unique to metazoans. However, the yeast proteins Mon1, Ccz1 and She3 have been reported to display homology to the HPS1 and HPS4 subunits of BLOC‐3 and the BLOS2 subunit of BLOC‐1, respectively. In this work, we have systematically searched for orthologs of BLOC subunits in the annotated genomes of over 160 species of eukaryotes, including metazoans and fungi in the Opisthokonta group as well as highly divergent organisms. We have found orthologs of six of the eight BLOC‐1 subunits, two of the three BLOC‐2 subunits, and the two BLOC‐3 subunits, in some non‐opisthokonts such as Dictyostelium discoideum, suggesting an early evolutionary origin for these complexes. On the other hand, we have obtained no evidence in support of the notion that yeast She3 would be an ortholog of BLOS2, and found that yeast Mon1 and Ccz1, despite displaying restricted homology to portions of HPS1 and HPS4, are unlikely to represent the orthologs of these BLOC‐3 subunits. Potential orthologs of Mon1 and Ccz1 were found in humans and several other eukaryotes.  相似文献   

12.
13.
The Hermansky-Pudlak syndrome (HPS) is a genetic hypopigmentation and bleeding disorder caused by defective biogenesis of lysosome-related organelles (LROs) such as melanosomes and platelet dense bodies. HPS arises from mutations in any of 8 genes in humans and 16 genes in mice. Two of these genes, HPS1 and HPS4, encode components of the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Herein we show that recombinant HPS1-HPS4 produced in insect cells can be efficiently isolated as a 1:1 heterodimer. Analytical ultracentrifugation reveals that this complex has a molecular mass of 146 kDa, equivalent to that of the native complex and to the sum of the predicted molecular masses of HPS1 and HPS4. This indicates that HPS1 and HPS4 interact directly in the absence of any other protein as part of BLOC-3. Limited proteolysis and deletion analyses show that both subunits interact with one another throughout most of their lengths with the sole exception of a long, unstructured loop in the central part of HPS4. An interaction screen reveals a specific and strong interaction of BLOC-3 with the GTP-bound form of the endosomal GTPase, Rab9. This interaction is mediated by HPS4 and the switch I and II regions of Rab9. These characteristics indicate that BLOC-3 might function as a Rab9 effector in the biogenesis of LROs.  相似文献   

14.
Hermansky-Pudlak syndrome (HPS) has evolved into a group of genetically distinct disorders characterized by oculocutaneous albinism, a storage pool deficiency, and impaired formation or trafficking of intracellular vesicles. HPS-1 results from mutations in the HPS1 gene and affects approximately 400 individuals in northwest Puerto Rico due to a 16-bp duplication in exon 15. Another 13 mutations have been reported in non-Puerto Ricans. HPS1 codes for a 79.3 kDa cytoplasmic protein of unknown function. HPS-1 patients typically develop fatal pulmonary fibrosis in their fourth decade. HPS-2 is caused by mutations in ADTB3A, which codes for the beta3A subunit of the adaptor protein-3 complex, AP3. This coat protein complex has been localized to the TGN as well as to a peripheral endosomal compartment. Evidence indicates that AP3 plays a role in the stepwise process of vesicular trafficking which leads to formation of the melanosomal, platelet dense body and lysosomal compartments. All three known HPS-2 patients had childhood neutropenia and infections. HPS-3 results from mutations in HPS3 and affects central Puerto Ricans homozygous for a 3904-bp deletion removing exon 1. At least 8 non-Puerto Rican patients have other HPS3 mutations, including an IVS5+1G->A splicing mutation in five Ashkenazi Jewish patients. HPS3 codes for a 113.7 kDa protein of unknown function. HPS-3 manifests with mild hypopigmentation and bleeding. All types of HPS are diagnosed by whole mount electron microscopic demonstration of absent platelet dense bodies, and molecular diagnoses are available for the Puerto Rican HPS1 and HPS3 founder mutations. Mouse and Drosophila models provide candidates for new genes causing HPS in humans. These genes will reveal the pathways by which specialized vesicles of lysosomal lineage arise within cells.  相似文献   

15.
Hermansky–Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2–deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2–deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.  相似文献   

16.
Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mregdsu gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mregdsu locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1ko/ko mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1.  相似文献   

17.
The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II α (PI4KIIα). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 (Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19,1415 -1426). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIα inclusion into AP-3 complexes. BLOC-1, PI4KIIα, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIα, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIα with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIα along the endocytic route.Membranous organelles along the exocytic and endocytic pathways are each defined by unique lipid and protein composition. Vesicle carriers communicate and maintain the composition of these organelles (2). Consequently defining the machineries that specify vesicle formation, composition, and delivery are central to understanding membrane protein traffic. Generally vesicle biogenesis uses multiprotein cytosolic machineries to select membrane components for inclusion in nascent vesicles (2, 3). Heterotetrameric adaptor complexes (AP-1 to AP-4) are critical to generate vesicles of specific composition from the different organelles constituting the exocytic and endocytic routes (2-4).The best understood vesicle formation machinery in mammalian cells is the one organized around the adaptor complex AP-2 (5). This complex generates vesicles from the plasma membrane using clathrin. Our present detailed understanding of AP-2 vesicle biogenesis mechanisms and interactions emerged from a combination of organellar and in vitro binding proteomics analyses together with the study of binary interactions in cell-free systems (5-9). In contrast, the vesicle biogenesis pathways controlled by AP-3 are far less understood. AP-3 functions to produce vesicles that traffic selected membrane proteins from endosomes to lysosomes, lysosome-related organelles, or synaptic vesicles (10-13). AP-3 is one of the protein complexes affected in the Hermansky-Pudlak syndrome (HPS;3 Online Mendelian Inheritance in Man (OMIM) 203300). So far, mutations in any of 15 mouse or eight human genes trigger a common syndrome. This syndrome encompasses defects that include pigment dilution, platelet dysfunction, pulmonary fibrosis, and occasionally neurological phenotypes (14, 15). All forms of HPS show defective vesicular biogenesis or trafficking that affects lysosomes, lysosome-related organelles (for example melanosomes and platelet dense granules), and, in some of them, synaptic vesicles (11-13). Most of the 15 HPS loci encode polypeptides that assemble into five distinct molecular complexes: the adaptor complex AP-3, HOPS, and the BLOC complexes 1, 2, and 3 (14). Recently binary interactions between AP-3 and BLOC-1 or BLOC-1 and BLOC-2 suggested that arrangements of these complexes could regulate membrane protein targeting (16). Despite the abundance of genetic deficiencies leading to HPS and genetic evidence that HPS complexes may act on the same pathway in defined cell types (17), we have only a partial picture of protein interactions organizing these complexes and how they might control membrane protein targeting.In this study, we took advantage of cell-permeant and reversible cross-linking of HPS complexes followed by their immunoaffinity purification to identify novel molecular interactions. Cross-linked AP-3 co-purified with BLOC-1, BLOC-2, HOPS, clathrin, and the membrane protein PI4KIIα. We previously identified PI4KIIα as a cargo and regulator of AP-3 recruitment to endosomes (1, 18). Using mutant cells deficient in either individual HPS complexes or a combination of them, we found that BLOC-1 facilitates the interaction of AP-3 and PI4KIIα. Our studies demonstrate that subunits of four of the five HPS complexes co-isolate with AP-3. Moreover BLOC-1, PI4KIIα, and AP-3 form a tripartite complex as demonstrated by sequential co-immunoprecipitations as well as by similar LAMP1 distribution phenotypes induced by down-regulation of components of this tripartite complex. Our findings indicate that BLOC-1 complex modulates the recognition of PI4KIIα by AP-3. These data suggest that AP-3, either in concert or sequentially with BLOC-1, participates in the sorting of common membrane proteins along the endocytic route.  相似文献   

18.
Hermansky–Pudlak syndrome (HPS) defines a group of at least seven autosomal recessive disorders characterized by albinism and prolonged bleeding due to defects in the lysosome-related organelles, melanosomes and platelet-dense granules, respectively. Most HPS genes, including HPS3, HPS5 and HPS6 , encode ubiquitously expressed novel proteins of unknown function. Here, we report the biochemical characterization of a stable protein complex named Biogenesis of Lysosome-related Organelles Complex-2 (BLOC-2), which contains the HPS3, HPS5 and HPS6 proteins as subunits. The endogenous HPS3, HPS5 and HPS6 proteins from human HeLa cells coimmunoprecipitated with each other from crude extracts as well as from fractions resulting from size-exclusion chromatography and density gradient centrifugation. The native molecular mass of BLOC-2 was estimated to be 340 ± 64 kDa. As inferred from the biochemical properties of the HPS6 subunit, BLOC-2 exists in a soluble pool and associates to membranes as a peripheral membrane protein. Fibroblasts deficient in the BLOC-2 subunits HPS3 or HPS6 displayed normal basal secretion of the lysosomal enzyme β-hexosaminidase. Our results suggest a common biological basis underlying the pathogenesis of HPS-3, -5 and -6 disease.  相似文献   

19.
Hermansky-Pudlak Syndrome (HPS) is a genetically heterogeneous disease caused by abnormalities in the synthesis and/or trafficking of lysosome-related organelles (LROs) including melanosomes, lamellar bodies of lung type II cells and platelet dense granules. At least 15 genes cause HPS in mice, with a significant number specifying novel subunits of protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). To ascertain whether BLOC complexes functionally interact in vivo, mutant mice doubly or triply deficient in protein subunits of the various BLOC complexes and/or the AP-3 adaptor complex were constructed and tested for viability and for abnormalities of melanosomes, lung lamellar bodies and lysosomes. All mutants, including those deficient in all three BLOC complexes, were viable though the breeding efficiencies of multiple mutants involving AP-3 were severely compromised. Interactions of BLOC protein complexes with each other and with AP-3 to affect most LROs were apparent. However, these interactions were tissue and organelle dependent. These studies document novel biological interactions of BLOC and AP-3 complexes in the biosynthesis of LROs and assess the role(s) of HPS protein complexes in general health and physiology in mammals. Double and triple mutant HPS mice provide unique and practical experimental advantages in the study of LROs.  相似文献   

20.
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive inherited disease consisting of (1) partial oculocutaneous albinism (with nystagmus, strabism, and visual acuity loss), (2) platelet storage pool deficiency (with bleeding diathesis), and (3) disorder of "ceroid" metabolism with a multisystem tissue lysosomal ceroid deposition. HPS is less uncommon in Puerto Rico, where the most important studies have been performed, but is a very rare disease in Europe. HPS basic defect remains unknown, even if an HPS-causing gene was identified in chromosome segment 10q23-q23.3, and several mutations have been reported. The aim of this article is to discuss, on the basis of a review of relevant literature, a new familial HPS clinical variant observed in 2 young sisters (aged 16 and 23 years old, respectively), characterized by the typical symptoms of this syndrome. Our patients also suffered from diffuse interstitial pulmonary disease and an unexpectedly increased platelet aggregation and were prone to bacterial infections. Interestingly, we observed urinary tract abnormality in the younger HPS sister and a porencephalic cyst in the older HPS sister; both of these developmental defects have been reported in the Cross syndrome (or oculocerebral hypopigmentation syndrome). It seems that in our patients, an overlapping of the phenotypic manifestations of different rare syndromes may be present. The presence of ceroid-like autofluorescent material in urinary sediment together with the histologic aspects and the autofluorescence of oral mucosa biopsy are consistent with a ceroid-like lipofuscin storage. HPS should be carefully tested for in suspected cases to prevent the severe visual impairment, rapidly progressive pulmonary fibrosis, and other complications associated with this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号