首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Gs and Gi, respectively, activate and inhibit the enzyme adenylyl cyclase. Regulation of adenylyl cyclase by the heterotrimeric Gs and Gi proteins requires the dissociation of GDP and binding of GTP to the alpha s or alpha i subunit. The beta gamma subunit complex of Gs and Gi functions, in part, to inhibit GDP dissociation and alpha subunit activation by GTP. Multiple beta and gamma polypeptides are expressed in different cell types, but the functional significance for this heterogeneity is unclear. The beta gamma complex from retinal rod outer segments (beta gamma t) has been shown to discriminate between alpha i and alpha s subunits (Helman et al: Eur J Biochem 169:431-439, 1987). beta gamma t efficiently interacts with alpha i-like G protein subunits, but poorly recognizes the alpha s subunit. beta gamma t was, therefore, used to define regions of the alpha i subunit polypeptide that conferred selective regulation compared to the alpha s polypeptide. A series of alpha subunit chimeras having NH2-terminal alpha i and COOH-terminal alpha s sequences were characterized for their regulation by beta gamma t, measured by the kinetics of GTP gamma S activation of adenylyl cyclase. A 122 amino acid NH2-terminal region of the alpha i polypeptide encoded within an alpha i/alpha s chimera was sufficient for beta gamma t to discriminate the chimera from alpha s. A shorter 54 amino acid alpha i sequence substituted for the corresponding NH2-terminal region of alpha s was insufficient to support the alpha i-like interaction with beta gamma t. The findings are consistent with our previous observation (Osawa et al: Cell 63:697-706, 1990) that a region in the NH2-terminal moiety functions as an attenuator domain controlling GDP dissociation and GTP activation of the alpha subunit polypeptide and that the attenuator domain is involved in functional recognition and regulation by beta gamma complexes.  相似文献   

2.
Changes in the relative abundance of the G protein alpha subunits were observed during early mouse development Gs alpha was almost exclusively present as a large form (Gs-1) in prenatal brain. Postnatally with a substantial increase in Gpp[NH]p stimulated adenylyl cyclase activity, the small form (Gs.s) increased in amount while Gs-1 decreased. These results suggest that the Gs-s may be the more effective cyclase activator and that changes in alternative splicing are developmentally regulated. Gi1 and Go appeared before birth whereas Gi2 developed postnatally. Opiate stimulation of GTPase and inhibition of adenylyl cyclase were fully expressed prenatally.  相似文献   

3.
In an attempt to study the mechanisms of action of membrane-bound adenylate cyclase, we have applied to rat brain synaptosomal membranes antibodies raised against purified bovine transducin (T) beta gamma subunits. The antibodies recognized one 36-kDa protein in Western blots of the membranes. Adenylate cyclase activation by GTP non-hydrolyzable analogues was greatly decreased in immune, as compared to preimmune, antibody-treated membranes, whereas the enzyme basal activity was unaffected by both types of antibodies. The inhibition of forskolin-stimulated adenylate cyclase by guanine 5'-(beta, gamma-imino)triphosphate (Gpp-(NH)p) was decreased in membranes preincubated with immune, but not preimmune, antibodies. Anti-T beta antibodies moderately decreased the extent of subsequent adenylate cyclase activation by forskolin, while not affecting activation by Al3+/F-. The enzyme activation by Gpp(NH)p in untreated membranes remained the same upon further incubation in the presence of either type of antibodies. Such results were consistent with the decreased exchange of guanine nucleotides which occurred in membrane treated with immune, but not preimmune antibodies, upon addition of GTP. The blockade of the regulation of adenylate cyclase by Gpp(NH)p observed in membranes pretreated by anti-T beta antibodies thus appears to be caused by the impairment of the guanine nucleotide exchange occurring on Gs alpha subunits. The G beta subunits in the adenylate cyclase complex seem to be instrumental in the guanine nucleotide exchange on G alpha subunits, just as T beta subunits are in the transducin complex.  相似文献   

4.
We have examined the ability of the beta gamma subunits of guanine nucleotide binding regulatory proteins (G proteins) to support the pertussis toxin (PT) catalyzed ADP-ribosylation of G protein alpha subunits. Substoichiometric amounts of the beta gamma complex purified from either bovine brain G proteins or the bovine retinal G protein, Gt, are sufficient to support the ADP-ribosylation of the alpha subunits of Gi (the G protein that mediates inhibition of adenylyl cyclase) and Go (a G protein of unknown function) by PT. This observation indicates that ADP-ribosylated G protein oligomers can dissociate into their respective alpha and beta gamma subunits in the absence of activating regulatory ligands, i.e., nonhydrolyzable GTP analogues or fluoride. Additionally, the catalytic support of ADP-ribosylation by bovine brain beta gamma does not require Mg2+. Although the beta gamma subunit complexes purified from bovine brain G proteins and the beta gamma complex of Gt support equally the ADP-ribosylation of alpha subunits by PT, there is a marked difference in their abilities to interact with Gs alpha. The enhancement of deactivation of fluoride-activated Gs alpha requires 25-fold more beta gamma from Gt than from brain G proteins to produce a similar response. This difference in potency of beta gamma complexes from the two sources was also observed in the ability of beta gamma to produce an increase in the activity of recombinant Gs alpha produced in Escherichia coli.  相似文献   

5.
The alpha subunit polypeptides of the G proteins Gs and Gi2 stimulate and inhibit adenylyl cyclase, respectively. The alpha s and alpha i2 subunits are 65% homologous in amino acid sequence but have highly conserved GDP/GTP binding domains. Previously, we mapped the functional adenylyl cyclase activation domain to a 122 amino acid region in the COOH-terminal moiety of the alpha s polypeptide (Osawa et al: Cell 63:697-706, 1990). The NH2-terminal half of the alpha s polypeptide encodes domains regulating beta gamma interactions and GDP dissociation. A series of chimeric cDNAs having different lengths of the NH2- or COOH-terminal coding sequence of alpha s substituted with the corresponding alpha i2 sequence were used to introduce multi-residue non-conserved mutations in different domains of the alpha s polypeptide. Mutation of either the amino- or carboxy-terminus results in an alpha s polypeptide which constitutively activates cAMP synthesis when expressed in Chinese hamster ovary cells. The activated alpha s polypeptides having mutations in either the NH2- or COOH-terminus demonstrate an enhanced rate of GTP gamma S activation of adenylyl cyclase. In membrane preparations from cells expressing the various alpha s mutants, COOH-terminal mutants, but not NH2-terminal alpha s mutants markedly enhance the maximal stimulation of adenylyl cyclase by GTP gamma S and fluoride ion. Neither mutation at the NH2- nor COOH-terminus had an effect on the GTPase activity of the alpha s polypeptides. Thus, mutation at NH2- and COOH-termini influence the rate of alpha s activation, but only the COOH-terminus appears to be involved in the regulation of the alpha s polypeptide activation domain that interacts with adenylyl cyclase.  相似文献   

6.
Previous kinetic studies (Tolkovsky, A.M., Braun, S., and Levitzki, A. (1982) Proc. Natl. Acad. Sci. U. S.A. 79, 213-222) and biochemical studies (Arad, H., Rosenbusch, J., and Levitzki, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6579-6583) from our laboratory suggest that Gs or alpha s remain associated with the catalytic subunit of adenylyl cyclase (C) throughout the activation cycle of adenylyl cyclase by hormone receptors. In this study we have purified GppNHp-activated bovine brain adenylyl cyclase over 3000-fold under mild solution conditions. We demonstrate that although the enzyme is permanently activated it retains the beta subunit when bound to a forskolin-agarose affinity column as long as it is not exposed to high salt concentrations. The stoichiometry of alpha s to beta to C is close to unity, suggesting that beta gamma subunits do not dissociate from Gs upon its activation. The complex gamma beta alpha s (GppNHp). C dissociates partially when migrating on a Superose 12 fast protein liquid chromatography molecular-seiving column. This partial dissociation probably results from the relatively diluted state of the enzyme at a high degree of purity. Prolonged ultracentrifugation of the complex also causes partial dissociation of the beta gamma subunits from alpha s (GppNHp). C. The apparent contradiction between the results reported here and the observation that beta gamma subunits inhibit cyclase activity when added to platelet membranes (Katada, T., Bokoch, G. M., Northrup, J. K., Ui, M., and Gilman, A. G. (1984a) J. Biol. Chem. 259, 3568-3577) is discussed. We suggest an alternative model to account for this inhibitory effect of added beta gamma subunits.  相似文献   

7.
Gs and Gi2 are G proteins whose alpha subunits are 65% homologous. Within the 355 amino acid alpha i2 polypeptide, substitution of residues Ile213-Lys319 with the corresponding alpha s region (Ile235-Arg356) generated a chimera that activated adenylyl cyclase, indicating that the alpha s activation domain resides within this 122 amino acid alpha s sequence. Mutation within alpha s residues Glu15-Pro144 resulted in an alpha s polypeptide having an enhanced rate of GDP dissociation. Mutation within two regions of the N-terminus influenced the ability of pertussis toxin to ADP-ribosylate the alpha subunit polypeptide, a reaction controlled by the beta gamma subunit complex. The findings define the G protein alpha subunit N-terminus as a regulatory region controlling beta gamma subunit interactions and GDP dissociation independent of the GTPase and effector activation domains.  相似文献   

8.
We have previously shown that a subset of patients with mitral valve prolapse and hyperadrenergic symptoms has enhanced isoprenaline-stimulated beta-adrenergic receptor high-affinity state formation (supercoupling) and increased adenylyl cyclase activity due to abnormal signal transduction by the stimulatory guanine nucleotide regulatory protein (Gs). In this study we looked for an alteration of the nucleotide coding sequence of the gene for alpha s, the subunit of Gs that is directly responsible for formation of the high affinity state and adenylyl cyclase activation, by cloning and sequencing the alpha s cDNA from neutrophils of 4 symptomatic patients and 1 control. No difference was observed between patients and control in the alpha s cDNA sequence. The splice variant concentrations in the fully expressed protein were also grossly unchanged in five patients and four controls. These data show that a primary alteration of the alpha s gene coding sequence is not responsible for defective Gs-associated signal transduction in dysautonomic MVP patients, and suggest that the molecular lesion could be an abnormal posttranslational modification of alpha s, a defect in the beta or gamma subunits of Gs, or an unusual interaction between the subunits in the Gs of these patients.  相似文献   

9.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

10.
Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha   总被引:19,自引:0,他引:19  
We have reduced the GTPase activity of the alpha subunit of Gs, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase, by introduction of point mutations analogous to those described in p21ras. Mutants G49V and Q227L differ from the wild type protein in the substitution of Val for Gly49 and Leu for Gln227, respectively (analogous to positions 12 and 61 in p21ras). Wild type and mutant proteins were synthesized in Escherichia coli, purified, and characterized. The rate constants for dissociation of GDP from G49V recombinant Gs alpha (rGs alpha) (0.47/min) and Q227L rGs alpha (0.23/min) differ by no more than 2-fold from that observed for the wild type protein (0.5/min). In marked contrast, the rate constants for hydrolysis of GTP by G49V rGs alpha (0.78/min) and Q227L rGs alpha (0.03-0.06/min) are 4-fold and roughly 100-fold slower than that for wild type rGs alpha (3.5/min). These reductions in the rate of hydrolysis of GTP result in significant fractional occupancy of these proteins by GTP in the presence of the nucleotide, 0.37 for G49V rGs alpha and 0.78 for Q227L rGs alpha, compared to 0.05 for wild type rGs alpha. When reconstituted with cyc- (Gs alpha-deficient) S49 cell membranes or purified adenylyl cyclase, both mutant proteins stimulate adenylyl cyclase activity in the presence of GTP to a much greater extent than does wild type Gs alpha; their maximal ability to activate the enzyme is largely unaltered. The fractional ability of a given Gs alpha polypeptide to active adenylyl cyclase in the presence of GTP correlates well with the fractinal occupancy of the protein by the nucleotide. The mutant subunits appear to interact normally with G protein beta gamma subunits, and their ability to activate adenylyl cyclase is enhanced by interaction with beta-adrenergic receptors. These results indicate that the structural analogy that has been inferred between the guanine nucleotide-binding domains of G proteins and the p21ras family is at least generally correct. They also provide confirmation of the kinetic model of G protein function and document mutations that permit the expression in vivo of constitutively activated G protein alpha subunits.  相似文献   

11.
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.  相似文献   

12.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

13.
Cloning of complementary DNAs that encode either of two forms of the alpha subunit of the guanine nucleotide-binding regulatory protein (Gs) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M.P., Casey, P.J., and Gilman, A.G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of Gs alpha (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13.min-1 and 0.34.min-1 at 20 degrees C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant Gs alpha have essentially the same kcat for GTP hydrolysis, approximately 4.min-1. Recombinant Gs alpha interacts functionally with G protein beta gamma subunits and with beta-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of beta gamma subunits. Both forms of recombinant Gs alpha can reconstitute GTP-, isoproterenol + GTP-, guanosine 5'-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for Gs purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant Gs alpha for adenylyl cyclase is 5-10 times lower than that of liver Gs under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that Gs alpha, when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.  相似文献   

14.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta subunits are functionally indistinguishable. GTP-dependent hormonal inhibition of adenylate cyclase and that caused by guanine nucleotide analogs seem to result from dissociation of the subunits of Gi. Such inhibition can be explained by reduction of the concentration of the free alpha subunit of Gs as a result of its interaction with the beta subunit of Gi in normal Gs-containing membranes. However, inhibition in S49 lymphoma cyc- cell membranes presumably cannot be explained by the Gi-Gs interaction, since the activity of the alpha subunit of Gs is not detectable in this variant. Several characteristics of Gi-mediated inhibition of adenylate cyclase have been studied in both S49 cyc- and wild type membranes. There are several similarities between inhibition of forskolin-stimulated adenylate cyclase by guanine nucleotides and somatostatin in cyc- and wild type membranes. 1) Somatostatin-induced inhibition of the enzyme is dependent on GTP; nonhydrolyzable GTP analogs are also effective inhibitors. 2) The effect of guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) is essentially irreversible, and somatostatin accelerates GTP gamma S-induced inhibition. 3) Inhibition of adenylate cyclase by somatostatin or Gpp(NH)p is attenuated by treatment of cells with islet-activating protein (IAP). 4) Both cyc- and wild type membranes contain the substrate for IAP-catalyzed ADP-ribosylation (the alpha subunit of Gi). 5) beta Subunit activity in detergent extracts of membranes is liberated by exposure of the membranes to GTP gamma S. The alpha subunit of Gi in such extracts has a reduced ability to be ADP-ribosylated by IAP, which implies that this subunit is in the GTP gamma S-bound form. The resolved subunits of Gi have been tested as regulators of cyc- and wild type adenylate cyclase under a variety of conditions. The alpha subunit of Gi inhibits forskolin-stimulated adenylate cyclase activity in cyc-, while the beta subunit stimulates; these actions are opposite to those seen with wild type membranes. The inhibitory effects of GTP plus somatostatin (or GTP gamma S) and the alpha subunit of Gi are not additive in cyc- membranes. In wild type, the inhibitory effects of the hormone and GTP gamma S are not additive with those of the beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Signal-transducing guanine-nucleotide-binding regulatory proteins (G proteins) are heterotrimers, composed of the nucleotide-binding alpha subunit and a beta gamma dimer. The influence of beta gamma dimer preparations of the retinal G protein transducin (TD) was studied on formylpeptide-receptor--G-protein interactions in membranes of differentiated HL 60 cells. For this, TD was prepared from bovine rod outer segment (ROS) membranes with either GTP or its analogs, guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta gamma-imino]triphosphate (Gpp[NH]p). After removal of free nucleotides, TD beta gamma was separated from TD alpha and its function analyzed. Addition of TD beta gamma isolated from TD prepared with GTP[S] (TD beta gamma GTP[S]) to HL 60 membranes abolished high-affinity binding of fMet-Leu-[3H]Phe (fMet, N-formylmethionine) to its receptor. In contrast, TD beta gamma isolated from TD prepared with GTP (TD beta gamma GTP), boiled TD beta gamma GTP[S] and TD alpha prepared with GTP[S] had no or only slight effects. The inhibitory effect of TD beta gamma GTP[S] on fMet-Leu-[3H]Phe receptor binding was potentiated by GDP at low concentrations but not by GTP[S]. Furthermore, TD beta gamma GTP[S], but not TD beta gamma GTP or TD beta gamma isolated from TD prepared with Gpp[NH]p (TD beta gamma Gpp[NH]p), prevented fMet-Leu-Phe-stimulated binding of [35S]GTP[S] to G proteins in HL 60 membranes, measured in the presence of GDP. When TD beta gamma GTP was incubated with GTP [S] and TD-depleted illuminated ROS membranes, and subsequently separated from the membranes and free GTP[S], this TD beta gamma GTP, similar to TD beta gamma GTP[S], abolished high-affinity binding of fMet-Leu-[3H]Phe to its receptor, fMet-Leu-Phe-stimulated binding of [35S]GTP[S], and fMet-Leu-Phe-stimulated GTP hydrolysis in HL 60 membranes. Inhibition of [35S]GTP[S] binding by TD beta gamma was not seen in the presence of the metabolically stable GDP analog, guanosine 5'-[beta-thio]diphosphate. In order to obtain an insight into the modification of TD beta gamma apparently caused by GTP[S], and into its mechanism of action in HL 60 membranes, TD, TD alpha and TD beta gamma, all prepared in the presence of GTP, were incubated with [35S]GTP[S] and TD-depleted illuminated ROS membranes. Fluorographic analysis of the supernatant proteins revealed 35S labelling of the beta band of the G protein. When apparently thiophosphorylated TD beta gamma was incubated with [3H]GDP in the presence of HL 60 membranes, [3H]GTP[S] was rapidly formed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of the glucagon receptor on the activation of the stimulatory GTP-binding protein of adenylyl cyclase (Gs) in the native rat liver membrane environment was studied. The activated state of Gs was assessed by its ability to reconstitute the cyc- S49 cell membrane adenylyl cyclase. The Gs protein was activated by saturating concentrations of guanosine 5'-thiotriphosphate (GTP gamma S) or guanyl-5'-yl imidodiphosphate in a hormone-dependent manner at 0.4 mM Mg2+ in native membranes or in membranes that had been treated with 1 mM N-ethylmaleimide to eliminate the catalytic activity of adenylyl cyclase. At 50 mM Mg2+, Gs was fully activated by GTP gamma S in the absence of hormone. The unactivated Gs protein migrates around 4 S, whereas activated Gs migrates around 2 S on sucrose density gradients. When pure Gs is analyzed on sucrose density gradients, it is found that the unactivated protein migrates at 4.1 S. Gs was activated by saturating concentrations of GTP gamma S and Mg2+, and the alpha subunit of Gs was chromatographically purified. The resolved alpha subunit of Gs that is capable of stimulating the cyc- adenylyl cyclase migrates at 2.1 S. From these data, we conclude that activation of Gs results in the dissociation of this protein in the membrane environment and that the hormone-occupied receptor promotes this dissociation process under conditions where Mg2+ ions are limiting.  相似文献   

17.
Histamine activation of adenylyl cyclase activity in sonicated enriched rat gastric parietal cells showed a time, temperature, and concentration dependence upon guanine diphosphoimide (Gpp(NH)p). Enzyme activation was first order with Gpp(NH)p alone or Gpp(NH)p plus histamine. The Ka for Gpp(NH)p was ~2 μm and was not influenced by histamine. GTP and GDP were inactive alone or with histamine and were competitive with Gpp(NH)p, showing apparent Ki's of near 0.4 and 0.3 μm, respectively. In the presence of Gpp(NH)p, parietal cell adenylyl cyclase was activated by histamine with an EC50 of 24 μm, the most potent in a series of histamine analogs, further substantiating an H2-receptor classification for this response. H2-Receptor antagonists were competitive inhibitors with submicromolar Ki's. Preincubation of parietal cells with histamine and Gpp(NH)p resulted in adenylyl cyclase activity up to 15 times the basal level. The activated state was retained after washing the cells free of histamine and Gpp(NH)p and was not reversed by the subsequent addition of either histamine, cimetidine, or GTP. The other gastric acid secretagogues, pentagastrin and carbamylcholine, were without effect upon histamine activation or the activated state of adenylyl cyclase. These results describe a level of control of histamine-sensitive adenylyl cyclase that requires consideration in the activation of the parietal cell H2-receptor system by histamine to modulate acid secretion.  相似文献   

18.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   

19.
beta 2-Adrenergic receptors expressed in Sf9 cells activate endogenous Gs and adenylyl cyclase [Mouillac B., Caron M., Bonin H., Dennis M. and Bouvier M. (1992) J. Biol. Chem. 267, 21733-21737]. However, high affinity agonist binding is not detectable under these conditions suggesting an improper stoichiometry between the receptor and the G protein and possibly the effector molecule as well. In this study we demonstrate that when beta 2-adrenergic receptors were co-expressed with various mammalian G protein subunits in Sf9 cells using recombinant baculoviruses signalling properties found in native receptor systems were reconstituted. For example, when beta 2AR was co-expressed with the Gs alpha subunit, maximal receptor-mediated adenylyl cyclase stimulation was greatly enhanced (60 +/- 9.0 versus 150 +/- 52 pmol cAMP/min/mg protein) and high affinity, GppNHp-sensitive, agonist binding was detected. When G beta gamma subunits were co-expressed with Gs alpha and the beta 2AR, receptor-stimulated GTPase activity was also demonstrated, in contrast to when the receptor was expressed alone, and this activity was higher than when beta 2AR was co-expressed with Gs alpha alone. Other properties of the receptor, including receptor desensitization and response to inverse agonists were unaltered. Using antisera against an epitope-tagged beta 2AR, both Gs alpha and beta gamma subunits could be co-immunoprecipitated with the beta 2AR under conditions where subunit dissociation would be expected given current models of G protein function. A desensitization-defective beta 2AR (S261, 262, 345, 346A) and a mutant which is constitutively desensitized (C341G) could also co-immunoprecipitate G protein subunits. These results will be discussed in terms of a revised view of G protein-mediated signalling which may help address issues of specificity in receptor/G protein coupling.  相似文献   

20.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号