首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Luque procedure was developed to correct the deformity without the need of bracing and maintaining that correction with growth. However many authors are disappointed by their results and the complications which appear in the management of infantile scoliosis with Luque trolley alone. Besides failed implants, pseudarthrosis, modest spinal growth and protuberant rods and wires, the major problem of the Luque systems is the high incidence of loss of correction by postoperative rotation. Therefore a new application technique is recommended. A standard posterior extraperiostal approach is chosen. Sublaminar titanium cables are passed at each level except the caudal lamina. Then the rods are precontoured in shape of the planed curve correction. We use a low profile titanium instrumentation with 5.0 mm diameter rods and 4.2 mm pedicle screws. In contrast to the conventional use of two antiparallel "L"-rods we recommend the use of one reversed "U"-rod securing the laminae with sublaminar titanium cables of the upper end vertebrae. For fixation of the lower spine a dual-opening pedicle screw system is used. Using a holding forceps the distal rods are introduced and fixed into the side opening of the screws then secured by sublaminar wires. In addition both single rods are stabilized by a low profile cross link bar. This technique allows to correct pelvic obliquity and a stable anchorage of two screws reduces risk of postoperatively rotation or caudal rod slippage due to gravity forces.  相似文献   

2.
Clinical results of posterior fusion plus pedicle screw fixation in the treatment of upper cervical spine instability were taken under consideration. 24 patients with atlantoaxial instability were treated with C1-2 pedicle screws and rods fixation under general anesthesia. There were 18 males and 6 females with mean age of 49.8 years (age range 17–69 years). The postoperative radiographs verified good position of all screws, with satisfactory atlantoaxial reduction. Follow-up for 3–45 months (average 23 months) showed no spinal cord and vertebral artery injury or interfixation failure. Atlantoaxial alignment and stability were restored without complication due to instrumentation. In conclusion, posterior atlantoaxial pedicle screw and rod fixation provide immediate three-dimensional rigid fixation of atlantoaxial joint and are more effective techniques compared with previously reported techniques.  相似文献   

3.
The selection of an ideal screw size plays a crucial role in the success of spinal instrumentation as larger diameter screws are thought to provide better fixation strength but increase the risk of pedicle failure during insertion. On the other hand, smaller diameter screws are with lesser risk of pedicle breakage but are thought to compromise the stability of the instrumentation. By investigating the relationship between screw diameter and the pullout strength of pedicle screws after fatigue loading, this study seeks to find quantitative biomechanical data for surgeons in determining the most ideal diameter size screws when performing surgical implementations on osteoporotic vertebrae.Twenty-seven osteoporotic (BMD ranged: 0.353–0.848 g/cm2) thoracic vertebrae (T3-T8) were harvested from 5 human cadavers. Two sizes of poly-axial screws (5.0 mm × 35 and 4.35 mm × 35) were implanted into each pedicles of the vertebrae by an experienced surgeon. Specimens were randomly distributed into control group, fatigue group of 5000 and 10,000 cycles with peak-to-peak loadings of 10–100 N at 1 Hz. Each specimen was then axial pullout tested at a constant rate of 5 mm/min. The ultimate pullout strength (N) & stiffness (N/mm) were obtained for analysis.The results showed that although the larger diameter screws achieved superior pullout strength immediately after the implantation, both sizes of screws exhibited comparable pullout strengths post fatigue loading. This indicates that the smaller diameter screws may be considered for surgical techniques performed on osteoporotic vertebrae for reduced risk of pedicle breakage without sacrificing fixation strength.  相似文献   

4.
QUESTION: New spinal implants need to be tested for primary stability in vitro under standardized laboratory conditions. To ensure the reliability of the test procedures, quality assurance standards in accordance with ISO 9000 were introduced to standardize testing including experimental set ups, loading and test frequency. These standards, however, require a relatively long time to implement. METHOD: The LSP test was used to compare various surface treatments by different shot peening processes applied to spinal rods for dorsal spine implant systems. 6 rods made of two different cp-Titanium materials (Ti-2 and Ti-4) were tested. Dynamic tests were performed with the MTS 810 mono-axial servo-hydraulic test equipment. Beginning with a load of 200 N the rods were subjected to tensile and compressive loads, which were increased in steps of 100 N after every 50.000 cycles until rod failure. RESULTS: Results were available after one to two weeks. The best results (LSP 167 million) were achieved with Ti-4 rods shot peened with steel balls and glass beads. In comparison, the lowest LSP value of 81 million was found with Ti-2 rods shot peened with glass beads only. CONCLUSION: This high speed testing method has reduced the development time from two years to 6 months.  相似文献   

5.
BACKROUND: The aim of this prospective study was (1) to evaluate the accuracy of pedicle screw placement using Computer - Assisted Orthopedic - Surgery (CAOS) in comparison to conventionelly image intensifier controlled pedicle screw instrumentation, (2) to compare our results with data from literature and (3) report our experiences with this technique. PATIENTS AND METHODS: Between 11/00 and 11/01 sixteen patients planned for spine surgery were subsequently recruited. Pedicle screw instrumentation was done in each patient as well with computer aided surgery (CAOS, SurgiGate-System, Medivision, Stratec Medical, Swiss) as also with image intensifier control, allowing for intraindividual comparison. Evaluation of pedicle screw placement was carried out with postoperative computed tomography (CT) or magnetic resonance imaging (MRI). RESULTS: 33 of altogether 36 pedicle screws inserted with Computer-Assistance (CAOS) were correctly placed (91,7%), however only 17 of altogether 24 pedicle screws inserted under image intensifier control (70,8%). The difference of frequency of screw misplacement between Computer-aided and image intensifier controlled instrumentation was statistically significant (p<0.05; chi-square test). CONCLUSION: Computer assisted surgery reduces significantly the misplacement rate of pedicle screws and remains for experienced spine surgeons an important support in the operative treatment of complex spinal deformities in future. Additionally it can be expected that Computer-Navigation will also spread out in the field of minimal-invasive spinal surgery, e.g. the kyphoplasty. The use of this technique supports beside the medical-technical knowledge an improved three-dimensional orientation in the education of spine surgeons.  相似文献   

6.

Background

The incidence of spinal deformity in children with Prader-Willi syndrome (PWS) is high, with 86% of these patients found to have a significant structural scoliosis; however, there are very few case reports describing surgical treatment for this deformity.

Methods

The authors reviewed a case series consisting of 6 patients who underwent spine surgery for scoliosis. Children's mean age at index surgery was 12 years and 10 months (range, 10 to 15 yrs). Clinical evaluation revealed the typical phenotypic features of the PWS in all of the patients; 4 subjects had a karyotype confirmation of PWS. Major structural curves showed preoperative mean Cobb angles of 80.8° (range, 65° to 96°). Hybrid instrumentation with sublaminar wires, hooks and screws was used in the first 2 patients, while the remaining 4 were treated with titanium pedicle screw constructs.

Results

The mean clinical and radiological follow-up was 3 years and 10 months (range, 2 years to 9 years). Major complication rate was 50%. One patient who developed a major intraoperative complication (paraparesis) prevented spinal fusion to be obtained: the neurologic deficit resolved completely after instrumentation removal. Solid arthrodesis and deformity correction in both coronal and sagittal plane was, however, achieved in the other 5 cases and no significant curve progression was observed at follow-up. Another major short-term complication was encountered 3 months after surgery in a patient who experienced the detachment of a distally located rod and required correction through revision surgery and caudal extension by one level. Cervico-thoracic kyphosis was seen in 1 patient who did not require revision surgery.

Conclusions

Spine reconstructive surgery in patients with PWS is rare and highly demanding. The best method of reconstruction is posterior multilevel pedicle screw fixation. Moreover, even with modern techniques, the risk of complications is still high. These new techniques, however, have shown to improve the postoperative course by allowing for immediate mobilization without any brace or cast. The use of the growing rod techniques, requiring repeated surgeries, should be carefully evaluated in each single case.  相似文献   

7.
The concept of semi-rigid fixation (SRF) has driven the development of spinal implants that utilize nonmetallic materials and novel rod geometries in an effort to promote fusion via a balance of stability, intra- and inter-level load sharing, and durability. The purpose of this study was to characterize the mechanical and biomechanical properties of a pedicle screw-based polyetheretherketone (PEEK) SRF system for the lumbar spine to compare its kinematic, structural, and durability performance profile against that of traditional lumbar fusion systems. Performance of the SRF system was characterized using a validated spectrum of experimental, computational, and in vitro testing. Finite element models were first used to optimize the size and shape of the polymeric rods and bound their performance parameters. Subsequently, benchtop tests determined the static and dynamic performance threshold of PEEK rods in relevant loading modes (flexion-extension (F/E), axial rotation (AR), and lateral bending (LB)). Numerical analyses evaluated the amount of anteroposterior column load sharing provided by both metallic and PEEK rods. Finally, a cadaveric spine simulator was used to determine the level of stability that PEEK rods provide. Under physiological loading conditions, a 6.35 mm nominal diameter oval PEEK rod construct unloads the bone-screw interface and increases anterior column load (approx. 75% anterior, 25% posterior) when compared to titanium (Ti) rod constructs. The PEEK construct's stiffness demonstrated a value lower than that of all the metallic rod systems, regardless of diameter or metallic composition (78%??80% reduction in F/E, p??70% reduction in LB, p??54% reduction in AR, p?相似文献   

8.
钛及钛合金由于其优良的抗腐蚀性、生物相容性、低密度和高强度等特点,已广泛应用于承力部位的骨修复,但是如何促进 植入体与骨组织界面的有效结合仍是技术瓶颈,一方面由于植入体的弹性模量与骨组织不匹配,由此产生的应力屏蔽易导致植 入体松动,另一方面植入体缺乏骨诱导作用,导致材料骨界面之间不能形成有效的生物化学结合。近来,具有表面优化处理的新 型生物医用多孔钛材料通过引入孔隙的方法,使其与骨组织的力学性能相匹配,并且应用活化改性技术,使其具有生物活性,成 为目前骨替代材料的研究热点和发展方向。本文简要总结了多孔钛材料在力学性能、生物相容性、制备方法和表面改性等方面的 研究进展,强调在保证其多孔优势性能的前提下,通过生物活性因子的引入,进一步改善其生物相容性,提高结合力,延长植入体 的寿命,使其具有诱导成骨功能,是新型多孔钛材料的发展趋势。  相似文献   

9.

Background

Various fabrication methods are used to improve the stability and osseointegration of screws within the host bone. The aim of this study was to investigate whether roughened surface titanium screws fabricated by electron beam melting can provide better stability and osseointegration as compared with smooth titanium screws in sheep cervical vertebrae.

Methods

Roughened surface titanium screws, fabricated by electron beam melting, and conventional smooth surface titanium screws were implanted into sheep for 6 or 12 weeks (groups A and B, respectively). Bone ingrowth and implant stability were assessed with three-dimensional imaging and reconstruction, as well as histological and biomechanical tests.

Results

No screws in either group showed signs of loosening. Fibrous tissue formation could be seen around the screws at 6 weeks, which was replaced with bone at 12 weeks. Bone volume/total volume, bone surface area/bone volume, and the trabecular number were significantly higher for a define region of interest surrounding the roughened screws than that surrounding the smooth screws at 12 weeks. Indeed, for roughened screws, trabecular number was significantly higher at 12 weeks than at 6 weeks. On mechanical testing, the maximum pullout strength was significantly higher at 12 weeks than at 6 weeks, as expected; however, no significant differences were found between smooth and roughened screws at either time point. The maximum torque to extract the roughened screws was higher than that required for the smooth screws.

Conclusions

Electron beam melting is a simple and effective method for producing a roughened surface on titanium screws. After 12 weeks, roughened titanium screws demonstrated a high degree of osseointegration and increased torsional resistance to extraction over smooth titanium screws.  相似文献   

10.
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.  相似文献   

11.
Scoliosis is defined as a spinal pathology characterized as a three-dimensional deformity of the spine combined with vertebral rotation. Treatment for severe scoliosis is achieved when the scoliotic spine is surgically corrected and fixed using implanted rods and screws. Several studies performed biomechanical modeling and corrective forces measurements of scoliosis correction. These studies were able to predict the clinical outcome and measured the corrective forces acting on screws, however, they were not able to measure the intraoperative three-dimensional geometry of the spinal rod. In effect, the results of biomechanical modeling might not be so realistic and the corrective forces during the surgical correction procedure were intra-operatively difficult to measure. Projective geometry has been shown to be successful in the reconstruction of a three-dimensional structure using a series of images obtained from different views. In this study, we propose a new method to measure the three-dimensional geometry of an implant rod using two cameras. The reconstruction method requires only a few parameters, the included angle θ between the two cameras, the actual length of the rod in mm, and the location of points for curve fitting. The implant rod utilized in spine surgery was used to evaluate the accuracy of the current method. The three-dimensional geometry of the rod was measured from the image obtained by a scanner and compared to the proposed method using two cameras. The mean error in the reconstruction measurements ranged from 0.32 to 0.45 mm. The method presented here demonstrated the possibility of intra-operatively measuring the three-dimensional geometry of spinal rod. The proposed method could be used in surgical procedures to better understand the biomechanics of scoliosis correction through real-time measurement of three-dimensional implant rod geometry in vivo.  相似文献   

12.

Purpose

Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system.

Methods

A L3–S1 FE model was modified to simulate decompression and fusion at L4–L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes.

Results

All reconstructive conditions displayed decreased motion at L4–L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems.

Conclusions

Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration.  相似文献   

13.
A numerical technique, geometric element modeling and analysis, was used to investigate the effect of the cross-sectional shape of the rod (circular versus square) in three-dimensional models of the standard (dual-rod) Texas Scottish Rite Hospital (TSRH) spinal instrumentation on two biomechanical characteristics (namely, stiffness and the von Mises equivalent stress) of the instrumentation under compressive force and torque, applied separately. The model constraints are the same as those acting on the instrumentation clinically, that is, when it is attached to the vertebrae of the human spine. Furthermore, the magnitudes of the compressive and torsional loadings applied on the model are within the range of those experienced by the spine during normal walking. It was found that use of square cross-sectioned rods leads to better biomechanical performance of the model compared to the case when the rods are circular. This finding points the way to the possibility of using square cross-sectioned rods in the TSRH instrumentation.  相似文献   

14.
Despite invention of titanium and resorbable screws and plates, still, one of the main challenges in bone fixation is the search for an ideal osteosynthetic material. Biomechanical properties, biocompatibility, and also cost effectiveness and clinical practicability are factors for the selection of a particular material. A promising alternative seems to be screws and plates made of bone. Recently, xenogenic bone pins and screws have been invented for use in joint surgery.In this study, screws made of allogenic sheep and xenogenic human bone were analyzed in a vital and dynamic sheep-model and compared to conventional titanium screws over a standard period of bone healing of 56 days with a constant applied extrusion force. Biomechanical analysis and histomorphological evaluation were performed.After 56 days of insertion xenogenic screws made of human bone showed significantly larger distance of extrusion of on average 173.8 μm compared to allogenic screws made of sheep bone of on average 27.8 and 29.95 μm of the titanium control group. Severe resorption processes with connective tissue interposition were found in the histomorphological analysis of the xenogenic screws in contrast to new bone formation and centripetal vascularization of the allogenic bone screw, as well as in processes of incorporation of the titanium control group.The study showed allogenic cortical bone screws as a substantial alternative to titanium screws with good biomechanical properties. In contrast to other reports a different result was shown for the xenogenic bone screws. They showed insufficient holding strength with confirmative histomorphological signs of degradation and insufficient osseointegration. Before common clinical use of xenogenic osteosynthetic material, further evaluation should be performed.  相似文献   

15.
Anchorage of pedicle screw instrumentation in the elderly spine with poor bone quality remains challenging. In this study, micro finite element (µFE) models were used to assess the specific influence of screw design and the relative contribution of local bone density to fixation mechanics. These were created from micro computer tomography (µCT) scans of vertebras implanted with two types of pedicle screws, including a full region-or-interest of 10 mm radius around each screw, as well as submodels for the pedicle and inner trabecular bone of the vertebral body. The local bone volume fraction (BV/TV) calculated from the µCT scans around different regions of the screw (pedicle, inner trabecular region of the vertebral body) were then related to the predicted stiffness in simulated pull-out tests as well as to the experimental pull-out and torsional fixation properties mechanically measured on the corresponding specimens. Results show that predicted stiffness correlated excellently with experimental pull-out strength (R2 > 0.92, p < .043), better than regional BV/TV alone (R2 = 0.79, p = .003). They also show that correlations between fixation properties and BV/TV were increased when accounting only for the pedicle zone (R2 = 0.66–0.94, p ≤ .032), but with weaker correlations for torsional loads (R2 < 0.10). Our analyses highlight the role of local density in the pedicle zone on the fixation stiffness and strength of pedicle screws when pull-out loads are involved, but that local apparent bone density alone may not be sufficient to explain resistance in torsion.  相似文献   

16.
The porcine model is frequently used during development and validation of new spinal devices, because of its likeness to the human spine. These spinal devices are frequently composed of pedicle screws with a reputation for stable fixation but which can suffer pullouts during preclinical implantation on young animals, leading to high morbidity. With a view to identifying the best choices to optimize pedicle screw fixation in the porcine model, this study evaluates ex vivo the impact of weight (age) of the animal, the level of the vertebrae (lumbar or thoracic) and the type of screw anchorage (mono- or bi-cortical) on pedicle screw pullouts. Among the 80 pig vertebrae (90- and 140-day-old) tested in this study, the average screw pullout forces ranged between 419.9N and 1341.2N. In addition, statistical differences were found between test groups, pointing out the influence of the three parameters stated above. We found that the the more caudally the screws are positioned (lumbar level), the greater their pullout resistance is, moreover, screw stability increases with the age, and finally, the screws implanted with a mono-cortical anchorage sustained lower pullout forces than those implanted with a bi-cortical anchorage. We conclude that the best anchorage can be obtained with older animals, using a lumbar fixation and long screws traversing the vertebra and inducing bi-cortical anchorage. In very young animals, pedicle screw fixations need to be bi-cortical and more numerous to prevent pullout.  相似文献   

17.

Background

Surgical treatments for early onset scoliosis (EOS) correct curvatures and improve respiratory function but involve many complications. A distractible, or ‘growing rod,’ implant construct that is more flexible than current metal rod systems may sufficiently correct curves in small children and reduce complications due to biomechanical factors. The purpose of this pilot study was to determine ranges of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polymer rods would be greater than conventional metal rods and lower than non-instrumented controls.

Methods

Biomechanical tests were conducted on six thoracic spines from skeletally immature domestic swines (35–40 kg). Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of polyetheretherketone (PEEK) (diameter 6.25 mm), titanium (4 mm), and cobalt-chrome alloy (CoCr) (5 mm). Lateral bending (LB) and flexion-extension (FE) moments were applied, and vertebral rotations were measured. Differences were determined by two-tailed t-tests and Bonferroni for four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α?=?0.05/4).

Results

In LB, ROM of spine segments after instrumenting with PEEK rods was lower than the non-instrumented control condition at each instrumented level. ROM was greater with PEEK rods than with Ti and CoCr rods at every instrumented level. Combining treated levels, in LB, ROM for PEEK rods was 35 % of control (p?<?0.0001) and 270 % of CoCr rods (p?<?0.01). In FE, ROM with PEEK was 27 % of control (p?<?0.001) and 180 % of CoCr (p?<?0.01). At proximal and distal adjacent non-instrumented levels in FE, mean ROM was lower for PEEK than for either metal.

Conclusions

PEEK rods increased flexibility versus metal rods, and decreased flexibility versus non-instrumented controls, both over the entire instrumented segment and at each individual level. Smaller mean increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease complications, such as junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.
  相似文献   

18.
Scoliosis is a three-dimensional deformation of the spine that can be treated by vertebral fusion using surgical instrumentation. However, the optimal configuration of instrumentation remains controversial. Simulating the surgical maneuvers with personalized biomechanical models may provide an analytical tool to determine instrumentation configuration during the pre-operative planning. Finite element models used in surgical simulations display convergence difficulties as a result of discontinuities and stiffness differences between elements. A kinetic model using flexible mechanisms has been developed to address this problem, and this study presents its use in the simulation of Cotrel-Dubousset Horizon surgical maneuvers. The model of the spine is composed of rigid bodies corresponding to the thoracic and lumbar vertebrae, and flexible elements representing the intervertebral structures. The model was personalized to the geometry of three scoliotic patients (with a thoracic Cobb angle of 45 degrees, 49 degrees and 39 degrees ). Binary joints and kinematic constraints were used to represent the rod-implant-vertebra joints. The correction procedure was simulated using three steps: (1) Translation of hooks and screws on the first rod; (2) 90 degrees rod rotation; (3) Hooks and screws look-up on the rod. After the simulation, slight differences of 0-6 degrees were found for the thoracic spine scoliosis and the kyphosis, and of 1-8 degrees for the axial rotation of the apical vertebra and for the orientation of the plane of maximum deformity, compared to the real post-operative shape of the patient. Reaction loads at the vertebra-implant link were mostly below 1000 N, while reaction loads at the boundary conditions (representing the overall action of the surgeon) were in the range 7-470 N and maximum torque applied to the rod was 1.8 Nm. This kinetic modeling approach using flexible mechanisms provided a realistic representation of the surgical maneuvers. It may offer a tool to predict spinal geometry correction and assist in the pre-operative planning of surgical instrumentation of the scoliotic spine.  相似文献   

19.
目的:评估和分析经骨折椎体椎弓根螺钉短节段固定治疗胸腰段单椎体粉碎性骨折的临床疗效。方法:选取胸腰段单椎体粉碎性骨折30例患者,分为两组,甲组20例,采用经骨折椎体椎弓根螺钉短节段固定治疗,均行骨折椎体及骨折椎体上下相邻椎体的椎弓根螺钉+双侧连接杆固定;乙组10例,只行骨折椎体的上下相邻椎体的椎弓根螺钉+连接杆固定术。术后随访。测定两组患者手术前后的椎体后凸畸形角和骨折椎体前方高度,评估其临床疗效。结果:术前平均后凸畸形角纠正:甲组15°,乙组11°,P0.05。术后骨折椎体前方的平均高度(和正常椎体前方高度比):甲组89%,乙组81%,P0.05;术后3个月随访:平均后凸畸形角纠正丢失,甲组2°,乙组6°,P0.05;骨折椎体前方的平均高度(和正常椎体前方高度比):甲组87%,乙组73%,P0.05。结论:经骨折椎体椎弓根螺钉短节段固定治疗胸腰段单椎体粉碎性骨折能提供更好的生物力学稳定性,更有利于骨折的复位和后凸畸形的纠正。  相似文献   

20.
Expansive pedicle screws significantly improve fixation strength in osteoporotic spines. However, the previous literature does not adequately address the effects of the number of lengthwise slits and the extent of screw expansion on the strength of the bone/screw interface when expansive screws are used with or without cement augmentation. Herein, four designs for expansive pedicle screws with different numbers of lengthwise slits and different screw expansion levels were evaluated. Synthetic bones simulating severe osteoporosis were used to provide a comparative platform for each screw design. The prepared specimens were then tested for axial pullout failure. Regardless of screw design, screws with cement augmentation demonstrated significantly higher pullout strength than pedicle screws without cement augmentation (p < 0.001). For screws without cement augmentation, solid screws exhibited the lowest pullout strength compared to the four expansive groups (p < 0.01). No significant differences in pullout strength were observed between the expansive screws with different designs (p > 0.05). Taken together, our results show that pedicle screws combined with cement augmentation may greatly increase screw fixation regardless of screws with or without expansion. An increase in both the number of slits and the extent of screw expansion had little impact on the screw-anchoring strength. Cement augmentation is the most influential factor for improving screw pullout strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号