首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable microtubules (as defined by resistance to Ca2+, drug or cold temperature induced disassembly) form in abundance during tubulin assembly in brain crude extracts. We have previously shown that, in rat brain crude extracts, all microtubule stabilizing activity could be ascribed to a single Ca(2+)-calmodulin binding and Ca(2+)-calmodulin regulated protein, called "stable tubule only polypeptide", STOP145 [Pirollet, F., Rauch, C. T., Job, D., & Margolis, R. L. (1989) Biochemistry 28, 835-842]. We have now performed an exhaustive study of STOP-like effectors in bovine brain high-speed supernatants. All activity binds to cation exchangers and to Ca(2+)-calmodulin affinity columns. The activity can be resolved into two peaks on sizing columns. The first eluted peak contains a prominent 220-kDa protein. The second peak contains an apparently homogeneous 20-kDa polypeptide. A monoclonal antibody specific to rat brain STOP145 recognizes the 220-kDa protein, but not the 20-kDa species. The 220-kDa protein can be purified on a STOP antibody column and accounts for the bulk of stabilizing activity in the first peak. The 20-kDa protein does not bind to STOP antibody affinity columns. Sequence analysis of oligopeptide fragments of the 20-kDa protein shows 100% homology with bovine myelin basic protein (MBP). Anti-MBP antibodies recognize the 20-kDa, but not the 220-kDa species. We conclude that the 220-kDa protein is the bovine equivalent to rat brain STOP145 and that the 20-kDa species is MBP. Microtubule stabilization by MBP and STOP220 is abolished in the presence of Ca(2+)-calmodulin, and inhibition curves are similar for both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Konishi K  Uyeda TQ  Kubo T 《FEBS letters》2006,580(15):3589-3594
Kinesin is a linear motor protein driven by energy released by ATP hydrolysis. In the present work, we genetically installed an M13 peptide sequence into Loop 12 of kinesin, which is one of the major microtubule binding regions of the protein. Because the M13 sequence has high affinity for Ca(2+)-calmodulin, the association of the engineered kinesin with microtubules showed a steep Ca(2+)-dependency in ATPase activity at Ca(2+) concentrations of pCa 6.5-8. The calmodulin-binding domain of plant kinesin-like calmodulin-binding protein is also known to confer Ca(2+)-calmodulin regulation to kinesins. Unlike this plant kinesin, however, our novel engineered kinesin achieves this regulation while maintaining the interaction between kinesin and microtubules. The engineered kinesin is switched on/off reversibly by an external signal (i.e., Ca(2+)-calmodulin) and, thus, can be used as a model system for a bio/nano-actuator.  相似文献   

3.
Microtubules, ordinarily cold-labile structures, are made entirely resistant to cold temperature by the presence of substoichiometric amounts of STOP (stable tubule only polypeptide), a microtubule-associated protein. We have produced a monoclonal antibody which specifically recognizes a 145-kDa protein previously implicated in STOP activity in rat brain extracts. An antibody affinity column removes both the 145-kDa protein and STOP activity from solution. A urea eluate from the affinity column contains the 145-kDa protein and exhibits substantial STOP activity. We conclude the 145-kDa protein accounts for all measurable STOP activity in rat neuronal extracts. For this work, we have developed an assay of microtubule cold stability which is generally applicable to the detection of STOP activity in various tissues. Using this assay, we show STOP activity is most abundant in neuronal tissue but is detectable in all tissues tested, with the exception of heart muscle. In all tissues that we have examined, STOP activity elutes as a single peak from heparin affinity columns, and in common with brain STOP, all activity is Ca2+-calmodulin sensitive. The monoclonal antibody recognizes the 145-kDa STOP in rat neuronal extracts but reacts with no protein in active fractions from other tissue. A similar, but not identical, analogue of brain STOP thus appears to be widespread in mammalian tissues.  相似文献   

4.
The kinesin-like calmodulin binding protein (KCBP) is a new member of the kinesin superfamily that appears to be present only in plants. The KCBP is unique in its ability to interact with calmodulin in a Ca2+-dependent manner. To study the interaction of the KCBP with microtubules, we expressed different regions of the Arabidopsis KCBP and used the purified proteins in cosedimentation assays with microtubules. The motor domain with or without the calmodulin binding domain bound to microtubules. The binding of the motor domain containing the calmodulin binding region to microtubules was inhibited by Ca2+-calmodulin. This Ca2+-calmodulin regulation of motor domain interactions with microtubules was abolished in the presence of antibodies specific to the calmodulin binding region. In addition, the binding of the motor domain lacking the calmodulin binding region to microtubules was not inhibited in the presence of Ca2+-calmodulin, suggesting an essential role for the calmodulin binding region in Ca2+-calmodulin modulation. Results of the cosedimentation assays with the N-terminal tail suggest the presence of a second microtubule binding site on the KCBP. However, the interaction of the N-terminal tail region of the KCBP with microtubules was insensitive to ATP. These data on the interaction of the KCBP with microtubules provide new insights into the functioning of the KCBP in plants.  相似文献   

5.
N-Methyl-D-aspartate (NMDA) receptors (NMDARs), which play a key role in synaptic plasticity, are dynamically regulated by many signaling molecules and scaffolding proteins. Although actin cytoskeleton has been implicated in regulating NMDAR stability in synaptic membrane, the role of microtubules in regulating NMDAR trafficking and function is largely unclear. Here we show that microtubule-depolymerizing agents inhibited NMDA receptor-mediated ionic and synaptic currents in cortical pyramidal neurons. This effect was Ca(2+)-independent, required GTP, and was more prominent in the presence of high NMDA concentrations. The NR2B subunit-containing NMDA receptor was the primary target of microtubules. The effect of microtubule depolymerizers on NMDAR currents was blocked by cellular knockdown of the kinesin motor protein KIF17, which transports NR2B-containing vesicles along microtubule in neuronal dendrites. Neuromodulators that can stabilize microtubules, such as brain-derived neurotrophic factor, significantly attenuated the microtubule depolymerizer-induced reduction of NMDAR currents. Moreover, immunocytochemical studies show that microtubule depolymerizers decreased the number of surface NR2B subunits on dendrites, which was prevented by the microtubule stabilizer. Taken together, these results suggest that interfering with microtubule assembly suppresses NMDAR function through a mechanism dependent on kinesin-based dendritic transport of NMDA receptors.  相似文献   

6.
The interaction of calmodulin with its target proteins is known to affect the kinetics and affinity of Ca(2+) binding to calmodulin. Based on thermodynamic principles, proteins that bind to Ca(2+)-calmodulin should increase the affinity of calmodulin for Ca(2+), while proteins that bind to apo-calmodulin should decrease its affinity for Ca(2+). We quantified the effects on Ca(2+)-calmodulin interaction of two neuronal calmodulin targets: RC3, which binds both Ca(2+)- and apo-calmodulin, and alphaCaM kinase II, which binds selectively to Ca(2+)-calmodulin. RC3 was found to decrease the affinity of calmodulin for Ca(2+), whereas CaM kinase II increases the calmodulin affinity for Ca(2+). Specifically, RC3 increases the rate of Ca(2+) dissociation from the C-terminal sites of calmodulin up to 60-fold while having little effect on the rate of Ca(2+) association. Conversely, CaM kinase II decreases the rates of dissociation of Ca(2+) from both lobes of calmodulin and autophosphorylation of CaM kinase II at Thr(286) induces a further decrease in the rates of Ca(2+) dissociation. RC3 dampens the effects of CaM kinase II on Ca(2+) dissociation by increasing the rate of dissociation from the C-terminal lobe of calmodulin when in the presence of CaM kinase II. This effect is not seen with phosphorylated CaM kinase II. The results are interpreted according to a kinetic scheme in which there are competing pathways for dissociation of the Ca(2+)-calmodulin target complex. This work indicates that the Ca(2+) binding properties of calmodulin are highly regulated and reveals a role for RC3 in accelerating the dissociation of Ca(2+)-calmodulin target complexes at the end of a Ca(2+) signal.  相似文献   

7.
The inhibitory effect of calmodulin on the assembly of mature and immature rat brain microtubules was compared with that of the two major structural domains of this protein, the COOH-terminal fragment (amino acids 78-148) and the NH2-terminal fragment (amino acids 1-77), to determine the calmodulin structural domain responsible for the inhibitory effect on microtubule assembly. Microtubules prepared during the early stages of brain development, i.e., during intensive neurite outgrowth, are more sensitive to inhibition by the Ca2(+)-calmodulin complex than those obtained from adult brain. Significant inhibition of immature microtubule assembly was observed with both fragments in the absence of Ca2+, but the effects were more important when Ca2+ was present. With adult brain microtubules, the two fragments remained without effect on assembly in the absence of Ca2+, whereas some inhibition was seen in its presence but only with the COOH-terminal polypeptide. Under all these conditions, the COOH-terminal fragment was always more active than the NH2-terminal fragment on microtubule polymerization, albeit to a lesser extent than native calmodulin.  相似文献   

8.
Kinesins orchestrate cell division by controlling placement of chromosomes. Kinesins must be precisely regulated or else cell division fails. Calcium, a universal second messenger in eukaryotes, and calmodulin regulate some kinesins by causing the motor to dissociate from its biological track, the microtubule. Our focus was the mechanism of calcium regulation of kinesin at atomic resolution. Here we report the crystal structure of kinesin-like calmodulin-binding protein (KCBP) from potato, which was resolved to 2.3 A. The structure reveals three subdomains of the regulatory machinery located at the C terminus extension of the kinesin motor. Calmodulin that is activated by Ca2+ ions binds to an alpha-helix positioned on the microtubule-binding face of kinesin. A negatively charged segment following this helix competes with microtubules. A mimic of the conventional kinesin neck, connecting the calmodulin-binding helix to the KCBP motor core, links the regulatory machine to the kinesin catalytic cycle. Together with biochemical data, the crystal structure suggests that Ca(2+)-calmodulin inhibits the binding of KCBP to microtubules by blocking the microtubule-binding sites on KCBP.  相似文献   

9.
Neuronal differentiation and function require extensive stabilization of the microtubule cytoskeleton. Neurons contain a large proportion of microtubules that resist the cold and depolymerizing drugs and exhibit slow subunit turnover. The origin of this stabilization is unclear. Here we have examined the role of STOP, a calmodulin-regulated protein previously isolated from cold-stable brain microtubules. We find that neuronal cells express increasing levels of STOP and of STOP variants during differentiation. These STOP proteins are associated with a large proportion of microtubules in neuronal cells, and are concentrated on cold-stable, drug-resistant, and long-lived polymers. STOP inhibition abolishes microtubule cold and drug stability in established neurites and impairs neurite formation. Thus, STOP proteins are responsible for microtubule stabilization in neurons, and are apparently required for normal neurite formation.  相似文献   

10.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

11.
Banks JD  Heald R 《Current biology : CB》2004,14(22):2033-2038
During cell division, the proper formation of a bipolar spindle and its function to segregate chromosomes requires precise coordination of microtubule-stabilizing and destabilizing activities. Globally destabilized, dynamic microtubules radiating from duplicated centrosomes are locally regulated by chromosomes. Proteins at the kinetochore of each sister chromatid mediate a dynamic attachment, allowing chromosome movement coupled to microtubule polymerization/depolymerization and error-correction mechanisms for improperly attached chromosomes. The tumor suppressor protein adenomatous polyposis coli (APC) stabilizes microtubules both in vitro and in vivo and is implicated in mitosis, although its mechanisms of action are not well characterized. Here, we show that in mitotic Xenopus egg extracts, the carboxyl-terminus of APC can associate with the amino terminus of the microtubule-destabilizing KinI, Xenopus mitotic centromere-associated kinesin (XMCAK), in a cytoplasmic complex. We find that like XMCAK, APC can localize to the centromere as well as the kinetochore region of mitotic chromosomes and does not require microtubules for chromosomal targeting in Xenopus egg extracts. We propose that the presence of these proteins in a complex brings together both positive and negative microtubule effectors, whose opposing activities may be regulated by additional factors, thereby providing precise control of both global and local microtubule dynamics.  相似文献   

12.
Intrinsic microtubule stability in interphase cells   总被引:13,自引:4,他引:9       下载免费PDF全文
Interphase microtubule arrays are dynamic in intact cells under normal conditions and for this reason they are currently assumed to be composed of polymers that are intrinsically labile, with dynamics that correspond to the behavior of microtubules assembled in vitro from purified tubulin preparations. Here, we propose that this apparent lability is due to the activity of regulatory effectors that modify otherwise stable polymers in the living cell. We demonstrate that there is an intrinsic stability in the microtubule network in a variety of fibroblast and epithelial cells. In the absence of regulatory factors, fibroblast cell interphase microtubules are for the most part resistant to cold temperature exposure, to dilution-induced disassembly and to nocodazole-induced disassembly. In epithelial cells, microtubules are cold-labile, but otherwise similar in behavior to polymers observed in fibroblast cells. Factors that regulate stability of microtubules appear to include Ca2+ and the p34cdc2 protein kinase. Indeed, this kinase induced complete destabilization of microtubules when applied to lysed cells, while a variety of other protein kinases were ineffective. This suggests that p34cdc2, or a kinase of similar specificity, may phosphorylate and inactivate microtubule-associated proteins, thereby conferring lability to otherwise length-wise stabilized microtubules.  相似文献   

13.
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

14.
《朊病毒》2013,7(4):334-338
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

15.
Activation of mast cells by aggregation of the high-affinity IgE receptors (FcεRI) initiates signaling events leading to the release of inflammatory and allergic mediators stored in cytoplasmic granules. A key role in this process play changes in concentrations of intracellular Ca(2+) controlled by store-operated Ca(2+) entry (SOCE). Although microtubules are also involved in the process leading to degranulation, the molecular mechanisms that control microtubule rearrangement during activation are largely unknown. In this study, we report that activation of bone marrow-derived mast cells (BMMCs) induced by FcεRI aggregation or treatment with pervanadate or thapsigargin results in generation of protrusions containing microtubules (microtubule protrusions). Formation of these protrusions depended on the influx of extracellular Ca(2+). Changes in cytosolic Ca(2+)concentration also affected microtubule plus-end dynamics detected by microtubule plus-end tracking protein EB1. Experiments with knockdown or reexpression of STIM1, the key regulator of SOCE, confirmed the important role of STIM1 in the formation of microtubule protrusions. Although STIM1 in activated cells formed puncta associated with microtubules in protrusions, relocation of STIM1 to a close proximity of cell membrane was independent of growing microtubules. In accordance with the inhibition of Ag-induced Ca(2+) response and decreased formation of microtubule protrusions in BMMCs with reduced STIM1, the cells also exhibited impaired chemotactic response to Ag. We propose that rearrangement of microtubules in activated mast cells depends on STIM1-induced SOCE, and that Ca(2+) plays an important role in the formation of microtubule protrusions in BMMCs.  相似文献   

16.
Schroeter M  Chalovich JM 《Biochemistry》2004,43(43):13875-13882
Fesselin is a proline-rich actin-binding protein that was isolated from avian smooth muscle. Fesselin bundles actin and accelerates actin polymerization by facilitating nucleation. We now show that this polymerization of actin can be regulated by Ca(2+)-calmodulin. Fesselin was shown to bind to immobilized calmodulin in the presence of Ca(2+). The fesselin-calmodulin interaction was confirmed by a Ca(2+)-dependent increase in 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) fluorescence upon addition of fesselin to MIANS-labeled wheat germ calmodulin. The affinity was estimated to be approximately 10(9) M(-1). The affinity of Ca(2+)-calmodulin to the fesselin F-actin complex was approximately 10(8) M(-1). Calmodulin binding to fesselin appeared to be functionally significant. In the presence of fesselin and calmodulin, the polymerization of actin was Ca(2+)-dependent. Ca(2+)-free calmodulin either had no effect or enhanced the ability of fesselin to accelerate actin polymerization. Ca(2+)-calmodulin not only reversed the stimulatory effect of fesselin but reduced the rate of polymerization below that observed in the absence of fesselin. While Ca(2+)-calmodulin had a large effect on the interaction of fesselin with G-actin, the effect on F-actin was small. Neither the binding of fesselin to F-actin nor the subsequent bundling of F-actin was greatly affected by Ca(2+)-calmodulin. Fesselin may function as an actin-polymerizing factor that is regulated by Ca(2+) levels.  相似文献   

17.
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.  相似文献   

18.
Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90–177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90–177) to microtubules with a 1:1 MAP6(90–177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90–177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca2+-calmodulin competes with microtubules for MAP6(90–177) binding and that the binding mode of MAP6(90–177) to microtubules and Ca2+-calmodulin involves a common stretch of amino acid residues on the MAP6(90–177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca2+-calmodulin.  相似文献   

19.
Proteins containing the EF-hand Ca(2+)-binding motif, such as calmodulin and calcineurin B, function as regulators of various cellular processes. Here we focus on p22, an N-myristoylated, widely expressed EF-hand Ca(2+)-binding protein conserved throughout evolution, which was shown previously to be required for membrane traffic. Immunofluorescence studies show that p22 distributes along microtubules during interphase and mitosis in various cell lines. Moreover, we report that p22 associates with the microtubule cytoskeleton indirectly via a cytosolic microtubule-binding factor. Gel filtration studies indicate that the p22-microtubule-binding activity behaves as a 70- to 30-kDa globular protein. Our results indicate that p22 associates with microtubules via a novel N-myristoylation-dependent mechanism that does not involve classic microtubule-associated proteins and motor proteins. The association of p22 with microtubules requires the N-myristoylation of p22 but does not involve p22's Ca(2+)-binding activity, suggesting that the p22-microtubule association and the role of p22 in membrane traffic are functionally related, because N-myristoylation is required for both events. Therefore, p22 is an excellent candidate for a protein that can mediate interactions between the microtubule cytoskeleton and membrane traffic.  相似文献   

20.
F Solomon  M Magendantz  A Salzman 《Cell》1979,18(2):431-438
In this paper we describe a procedure for detecting proteins associated with cytoplasmic microtubules in vivo. Detergent-extracted cytoskeletons of NIL8 hamster cells are prepared under conditions which preserve the microtubules. The cytoskeletons are then extracted in the presence of calcium, which depolymerizes the microtubules and quantitatively extracted cytoskeletons are prepared from cells that have been incubated with colchicine. The cytoskeletons from these cells contain no microtubules or tubulin. Electrophoretic analysis of the calcium extracts of the colchicine-treated and untreated cells reveals several radioactively labeled polypeptides. There is, however, no apparent quantitative or qualitative difference between the two extracts other than the tubulin polypeptides. Each of the extracts is mixed with an excess of unlabeled calf brain microtubule protein and carried through cycles of temperature-dependent microtubule assembly. Distinct species from each extract co-assemble at a constant ratio, but only one polypeptide is uniquely derived from cells containing intact microtubules. The molecular weight of this polypeptide is similar to that proposed for the tau species detected in brain microtubule preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号