首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

2.
Crosslinking of F-actin by a bifunctional reagent glutaraldehyde resulted in a marked decrease of viscosity and length of F-actin filaments. The extent and rate of superprecipitation of actomyosin reconstituted from the modified actin were lower than those of unmodified actin-myosin complex, but activation of heavy meromyosin ATPase by the crosslinked actin was higher than by unmodified one. Heavy meromyosin ATPase activated by the crosslinked actin was distinctly less dependent on KCl concentration than that activated by unmodified actin. Turbidity of the modified acto-heavy meromyosin in the presence of ATP exceeded the sum of turbidities of actin and heavy meromyosin, whereas in the case of unmodified acto-heavy meromyosin the turbidity was comparable to that for noninteracting system. The difference in activation of heavy meromyosin. ATPase by the cross-linked and unmodified actin, clearly seen at room temperature, significantly diminished when temperature was lowered to 0 degrees C.  相似文献   

3.
The influence of the DTNB light chain of myosin on its enzymatic activities was examined by studying the superprecipitation of actomyosin and the actin-activated ATPase of heavy meromyosin (HMM) [EC 3.6.1.3]. Although the Ca2+-, Mg2+-, and EDTA-ATPase activities of control and DTNB myosin were practically the same, the superprecipitation of actomyosin prepared from actin and DTNB myosin occurred more slowly than that of control myosin. The apparent binding constant obtained from double-reciprocal plots of actin-activated ATPase of DTNB HMM was lower than that of control HMM. Recombination of DTNB myosin and HMM with DTNB light chains restored the original properties of myosin and HMM. The removal of DTNB light chain from myosin had no effect on the formation of the rigor complex between actin and myosin. These results suggest that the DTNB light chain participates in the interaction of myosin with actin in the presence of ATP.  相似文献   

4.
The ATPase activities of acto-heavy meromyosin and of acto-myosin minifilaments have been compared under the same conditions at low ATP (0.1 mM) and at several KC1 concentrations. The activities, which are strongly salt-dependent in both systems, have been found to be similar at high ionic strength (about 0.16 M) but different at lower ionic strength (0.06-0.07 M). Under this last condition, the catalytic constants kcat and Km are lower for acto-myosin minifilaments than for acto-heavy meromyosin ATPase. In addition, at low ionic strength, any decrease in the concentration of any of the ionic species (ATP, citrate, etc.) induces an increase in the interaction strength between myosin and actin filaments, as revealed by the Km changes. The presence of the troponintropomyosin complex and of Ca2+ also enhances the strength of this interaction. On the other hand, the occurrence of particular interactions between F-actin and myosin minifilaments is further substantiated by the phenomenon of superprecipitation which occurs when the ATP concentration decreases. The favourable effect of the organized structure of the myosin minifilaments on the ATPase activity of actomyosin is discussed.  相似文献   

5.
In the present study, the question of whether the two myosin active sites are identical with respect to ATP binding and hydrolysis was reinvestigated. The stoichiometry of ATP binding to myosin, heavy meromyosin, and subfragment-1 was determined by measuring the fluorescence enhancement caused by the binding of MgATP. The amount of irreversible ATP binding and the magnitude of the initial ATP hydrolysis (initial Pi burst) was determined by measuring [gamma-32P]ATP hydrolysis with and without a cold ATP chase in a three-syringe quenched flow apparatus. The results show that, under a wide variety of experimental conditions: 1) the stoichiometry of ATP binding ranges from 0.8 to 1 mol of ATP/myosin active site for myosin, heavy meromyosin, and subfragment-1, 2) 80 to 100% of this ATP binding is irreversible, 3) 70 to 90% of the irreversibly bound ATP is hydrolyzed in the initial Pi burst, 4) the first order rate constant for the rate-limiting step in ATP hydrolysis by heavy meromyosin is equal to the steady state heavy meromyosin ATPase rate only if the latter is calculated on the basis of two active sites per heavy meromyosin molecule. It is concluded that the two active sites of myosin are identical with respect to ATP binding and hydrolysis.  相似文献   

6.
S A Mulhern  E Eisenberg 《Biochemistry》1976,15(26):5702-5708
It has been postulated that, during the hydrolysis of ATP, both normal and SH1-blocked heavy meromyosin undergo a rate-limiting transition from a refractory state which cannot bind to actin to a nonrefractory state which can bind to actin. This model leads to several predictions which were studied in the present work. First, the fraction of heavy meromysin or subfragment 1 which remains unbound to actin when the ATPase equals Vmax should have the same properties as the original protein. In the present study it was determined that the unbound protein has normal ATPase activity which suggests that it is unbound to actin for a kinetic reason rather than because it is a permanently altered form of the myosin. Second, if the heavy meromyosin heads act independently half as much subfragment 1 as heavy meromyosin should bind to actin. Experiments in the ultracentrifuge demonstrate that about half as much subfragment 1 as heavy meromyosin sediments with the actin at Vmax. Third, the ATP turnover rate per actin monomer at infinite heavy meromyosin concentration should be much higher than the ATP turnover rate per heavy meromyosin head at infinite actin concentration. This was found to be the case for SH1-blocked heavy meromyosin since, even at very high concentrations of SH1-blocked heavy meromyosin, in the presence of a fixed actin concentration, the actin-activated ATPase rate remained proportional to the SH1-blocked heavy meromyosin concentration. All of these results tend to confirm the refractory state model for both SH1-blocked heavy meromyosin and unmodified heavy meromyosin and subfragment 1. However, the nature of the small amount of heavy meromyosin which does bind to actin in the presence of ATP at high actin concentration remains unclear.  相似文献   

7.
Hydrolysis of highly enriched [gamma-18O]ATP in unlabeled water by acto-heavy meromyosin at low actin concentration was found to be heterogeneous in that significant amounts of both the species containing 0 or 3 18O-labeled oxygens/phosphate were formed. Detailed quantitative comparison with theoretical distributions over a wide range of actin concentrations, however, indicated that the pathway which catalyzed ATP hydrolysis with a low extent of exchange only made a significant contribution at a low actin concentration and did not represent a major fraction of the total hydrolysis seen at higher actin concentrations. This low exchange component was also detected in the dependence on actin of the steady state ATPase. At low actin the steady state ATPase rate increased more rapidly as a function of actin concentration than predicted by the Km and Vmax for actin activation observed at moderate to high actin levels. This extra ATP hydrolysis at low actin correlates with that predicted for the low exchange pathway both with respect to the fraction of the ATP hydrolyzed and to its dependence on the actin concentration.  相似文献   

8.
Interaction of actin from chicken gizzard and from rabbit skeletal muscle with rabbit skeletal muscle myosin was compared by measuring the rate of superprecipitation, the activation of the Mg-ATPase and inhibition of K-ATPase activity of myosin and heavy meromyosin, and determination of binding of heavy meromyosin in the absence of ATP. Both the rate of superprecipitation of the hybrid actomyosin and the activation of myosin ATPase by gizzard actin are lower than those obtained with skeletal muscle actin. The activation of myosin Mg-ATPase by the two actin species also shows different dependence on substrate concentration: with gizzard actin the substrate inhibition starts at lower ATP concentration. The double-reciprocal plots of the Mg-ATPase activity of heavy meromyosin versus actin concentration yield the same value of the extrapolated ATPase activity at infinite actin concentration (V) for the two actins and nearly double the actin concentration needed to produce half-maximal activation (Kapp) in the case of gizzard actin. A corresponding difference in the abilities of the two actin species to inhibit the K-ATPase activity of heavy meromyosin in the absence of divalent cations was also observed. The results are discussed in terms of the effect of substitutions in the amino acid sequence of gizzard and skeletal muscle actins on their interaction with myosin.  相似文献   

9.
S Oda  C Oriol-Audit  E Reisler 《Biochemistry》1980,19(24):5614-5618
Experiments have been carried out to assess the involvement of the myosin light chains [obtained by treatment of myosin with 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2)] in the control of cross-bridge movement and actomyosin interactions. Chymotryptic digestions of myosin, actomyosin, and myofibrils do not detect any Ca2+-induced change in the subfragment 2 region of myosin. Actin, like Ca2+, protects the in situ Nbs2 light chains from proteolysis and causes a partial switch in the digestion product of myosin from subfragment 1 to heavy meromyosin. This effect is independent of the state of aggregation of myosin, and it persists in acto heavy meromyosin and in actinomyosin in 0.6 M NaCl. Digestions and sedimentation studies indicate that there is no direct acto light chain interaction. Proteolysis of myosin shows a gradual transition from production of heavy meromyosin to subfragment 1 with lowering of the salt level. In the presence of Ca2+ heavy meromyosin is generated both in digestions of polymeric and of monomeric myosin. These results are explained in terms of localized changes within the Nbs2 light chains and subfragment 1. Subunit interactions in the myosin head lead to a Ca2+-induced reduction in the affinity of heavy meromyosin for actin in the presence of MgATP. The resulting Ca2+ inhibition of the actin-activated ATPase of myosin can be detected at high salt concentrations(75 mM KCl).  相似文献   

10.
F. F  bi  n  A. Mü  hlrad 《BBA》1968,162(4):596-603
1. The enzymic and actin binding properties of myosins trinitrophenylated to different extents in the presence or absence of ATP have been studied.

2. The enzymic properties of myosin trinitrophenylated in the absence of ATP are different from those of myosin treated in the presence of ATP even on trinitrophenylating an equal number of lysyl residues. On trinitrophenylation in the absence of ATP the EDTA-(K+-)activated ATPase and Ca2+-activated ATPase decrease while the Mg2+-activated ATPase considerably increases. In the presence of ATP the enzymic properties of myosin are much less affected by trinitrophenylation.

3. The actin binding capacity of trinitrophenylated myosin does not change, although its enzymic properties may be greatly altered, and even if its property to be activated by actin is completely lost.  相似文献   


11.
The missense mutation of Cys(442) to Tyr of myosin VI causes progressive postlingual sensorineural deafness. Here we report the affects of the C442Y mutation on the kinetics of the actomyosin ATP hydrolysis mechanism and motor function of myosin VI. The largest changes in the kinetic mechanism of ATP hydrolysis produced by the C442Y mutation are about 10-fold increases in the rate of ADP dissociation from both myosin VI and actomyosin VI. The rates of ADP dissociation from acto-C442Y myosin VI-ADP and C442Y myosin VI-ADP are 20-40 times more rapid than the steady state rates and cannot be the rate-limiting steps of the hydrolysis mechanism in the presence or absence of actin. The 2-fold increase in the actin gliding velocity of C442Y compared with wild type (WT) may be explained at least in part by the more rapid rate of ADP dissociation. The C442Y myosin VI has a significant increase ( approximately 10-fold) in the steady state ATPase rate in the absence of actin relative to WT myosin VI. The steady state rate of actin-activated ATP hydrolysis is unchanged by the C442Y mutation at low (<10(-7) m) calcium but is calcium-sensitive with a 1.6-fold increase at high ( approximately 10(-4) m) calcium that does not occur with WT. The actin gliding velocity of the C442Y mutant decreases significantly at low surface density of myosin VI, suggesting that the mutation hampers the processive movement of myosin VI.  相似文献   

12.
F Nakamura  M Naka  T Tanaka 《FEBS letters》1992,314(1):93-96
Ruthenium red was found to inhibit actin-activated myosin Mg(2+)-ATPase in smooth muscle and to bind to myosin heavy chain, but not to F-actin. The inhibition by Ruthenium red of actin-activated Mg(2+)-ATPase was of the competitive type with respect to actin (Ki 4.4 microM) and of the non-competitive type with respect to ATP (Ki 6.6 microM). However, Ruthenium red scarcely dissociated the acto-heavy meromyosin complex during the ATPase reaction. These results suggest that Ruthenium red interacts directly with the binding site for F-actin on the myosin heavy chain. This site is considered to be necessary not for maintaining the binding affinity of myosin for F-actin, but for activation of the Mg(2+)-ATPase.  相似文献   

13.
The interaction of actin with myosin was studied in the presence of ATP at low ionic strength by means of measurements of the actin-activated ATPase activity of myosin and superprecipitation of actomyosin. At high ATP concentrations the ATPase activities of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1) were activated by actin in the same extent. At low ATP concentrations the myosin ATPase activity was activated about 30-fold by actin, whereas those of HMM and S-1 were stimulated only several-fold. This high actin activation of myosin ATPase was coupled with the occurrence of superprecipitation. The activation of HMM or S-1 ATPase by actin shows a simple hyperbolic dependence on actin concentration, but the myosin ATPase was maximally activated by actin at a 2:1 molar ratio of actin to myosin, and a further increase in the actin concentration had no effect on the activation. These results suggest the presence of a unit for actin-myosin interaction, composed of two actin monomers and one myosin molecule in the filaments.  相似文献   

14.
The structure of the actin-myosin head complex during the ATPase cycle has been studied by electron microscopy of negatively stained acto-heavy-meromyosin. In the absence of ATP, heavy meromyosin molecules generally showed a regular, angled appearance, with both heads attached to the actin filament. In the presence of ATP, attached molecules showed a less ordered structure, often with only one head attached. We conclude that configurations other than the rigor structure occur during the actomyosin cross-bridge cycle.  相似文献   

15.
A method of affinity chromatography based on the trapping of actin filaments within agarose gel beads is described. This method can be used for the purification of myosin and its active proteolytic subfragments, as well as for studies on the interaction between actin and these proteins. Actin columns stabilized by phalloidin bind myosin, heavy meromyosin (HMM), and heavy meromyosin subfragment 1 (HMM-S1) specifically and reversibly. The effect of pyrophosphate and KCl on the dissociation of actomyosin, acto-HMM, or acto-HMM-S1 complex is reported. We also describe the single-step purification of myosin from a crude rabbit psoas muscle extract.  相似文献   

16.
1. The current assumption that the low ATPase activity of relaxed myofibrils is represented by the ATPase activity of myosin which has been set free during the dissociation of actomyosin was investigated. For this purpose, the ATPase activity of relaxed skeletal myofibrils of the rabbit and of the crab Maia squinado has been compared with the activity of contracted fibrils and of purified rabbit myosin in conditions of varying ionic strength, pH and concentrations of MgATP (i.e. MgATP2− + MgHATP) and Mg2+.

2. Contraction and relaxation of the fibrils was induced by changing the concentration of Ca2+ from about 5×10−5 to below 1×10−8 M.

3. In all conditions studied, the ATPase activity of relaxed fibrils was about 6–8 times less than that of the contracted fibrils, but it remained a typical actomyosin ATPase.

4. Quantitatively and qualitatively, this ATPase differs from the ATPase of myosin. For instance, its dependence on pH is the reverse of that of the myosin ATPase.

5. Calculation showed that the fibrils are dissociated by 90% in conditions of relaxation. Since the ATPase activity of myosin was merely some 2% of the actomyosin activity, the major part of the ATPase of fibrils, even at a dissociation of 90%, is bound to show the properties of the ATPase of actomyosin.

6. However, a dissociation of 90% cannot be distinguished from a dissociation of 100% by means of physical methods (viscosity, superprecipitation, resistance to stretch, etc.). This explains why physical methods indicate a “full” dissociation of actomyosin although, enzymatically, the ATPase is still of the actomyosin type.

7. The possible reasons are discussed for the discrepancy between the 100-fold increase in the ATP turnover and the 1000-fold increase in energy turnover of the living muscle during the transition from relaxed to active state. The most probable explanation seems to be an ATPase activity of myosin which is too high by a factor of ten as compared to the energy turnover of living muscle at the resting state. This high activity cannot be caused by a contamination of the myosin by Ca2+-insensitive actomyosin.  相似文献   


17.
Using glutaric dialdehyde, the muscle proteins myosin, actin, actomyosin and heavy meromyosin subfragment-1 (S-1) have been immobilized on capron fibers. The ATPase activity of myosin and its capability to interact with actin have been preserved whereas the ATPase activity of its subfragment decreased significnatly. Immobilization on capron fibers changes the pH dependence of the ATPase activity of myosin and of S-1 shifting the maximum towards the acid zone (pH 5.5) and increases the thermal stability of the enzyme. Calcium ions produce a stimulatory effect on ATPase; Mg2+ions yield no effect on myosin and S-1 but enhance the activity in the case of immobilized actomyosin though to a lesser degree than the ions of Ca2+. Immobilized actin retains its ability to form actomyosin complex.  相似文献   

18.
The effects of actin on the electron spin resonance of spin-labeled myosin   总被引:4,自引:0,他引:4  
Myosin and heavy meromyosin have been spin labeled at either the S1 or S2 thiol groups, and their interaction with F-actin has been studied by electron spin resonance, both in the absence of substrate and during the hydrolysis of ATP. The spectrum of myosin labeled at either group indicates strong immobilization of the label. In the absence of substrate, actin added to S1-labeled myosin slightly increases the separation of the outer spectral peaks, indicating a decrease in the mobility of the spin label. Actin also reduces the microwave power required to saturate the esr signal of S1-labeled myosin or heavy meromyosin. The latter phenomenon is a more sensitive measure of the actin-myosin interaction than the spectral change seen in the absence of saturation. This suggests that saturation measurements may provide a more sensitive method of detecting changes in the environment of slowly tumbling nitroxide radicals than spectral measurements carried out in the absence of saturation. The decrease in the amplitude of the spectrum on adding actin at saturating microwave power was used to determine the stoichiometry of the interaction between actin and heavy meromyosin. This decrease is maximal when 2 moles of actin monomer are added per mole of heavy meromyosin and is reversed when actin and myosin are dissociated by ATP. During the steady state hydrolysis of ATP, actin had no detectable effect on the spectrum of S1-labeled myosin. It can be concluded that spin labels bound to the S1 groups are in a region of the myosin molecule that is affected by the interaction with actin. Actin does not affect the rate at which the bound spin label is reduced by dithiothreitol nor does the spin labeling of S1 groups affect the activation by actin of the ATPase activity of myosin. These findings suggest that the most likely mechanism by which actin alters the mobility of labels on S1 groups involves a change in the conformation of myosin. If a spin label is bound to the S2 thiol groups rather than the S1 groups, then actin has no detectable effect on the spectrum either in the presence or absence of ATP.  相似文献   

19.
The kinetic properties of actomyosin have been examined using complexes of actin with the recently described (Reisler, E., Smith, C., and Seegan, G. (1980) J. Mol. Biol., in press) short, bipolar synthetic myosin filaments (minifilaments). It is shown, in contrast to previous observations with aggregated and insoluble myosin, that the kinetic behavior of actomyosin is similar to that of acto-heavy meromyosin. Owing to their size, solubility, and stability under conditions of the actin-activated ATPase measurements, the minifilaments provide a well defined experimental system. Thus, they constitute a convenient and appropriate material for studying actomyosin interactions.  相似文献   

20.
The actin-activated ATPase activities of myosin minifilaments and heavy meromyosin are similar at high actin concentrations. Under low ionic strength conditions, the minifilaments in Tris citrate buffer yield the same maximal turnover rate (Vmax) and apparent dissociation constant of actin from myosin (Kapp) as heavy meromyosin in standard low salt conditions. The time course of actin-activated ATP hydrolysis of minifilaments is similar to that observed for standard myosin preparations. Depending on the exact protein composition of the assay mixture, either the ATPase activity declines continuously with time, or is accelerated at the onset of superprecipitation. In analogy with myosin filaments, the ATPase of minifilaments shows a biphasic dependence on actin concentration. Super-precipitation of minifilaments follows a well resolved clearing phase during which their structural integrity appears to be fully preserved. These results indicate that minifilaments or similar small assemblies of myosin can fulfill contractile functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号