首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mild proteolysis by trypsin activates the purified (Ca2+ + Mg2+) - ATPase protein from human red cells in a way which is similar to the effect obtained by addition of calmodulin. The trypsin concentration required to reach half maximal effect in 3 minutes at 37°C is 2.5 – 3.5 μg/ml. SDS-poly-acrylamide gel electrophoresis reveals a degradation of the main protein (150'000 Dalton) into a large fragment (95'000 – 100'000 Dalton) and a small fragment (35'000 – 40'000 Dalton). Increasing ATPase activity correlates with the degree of proteolysis.The Ca of the digested (Ca2+ + Mg2+)-ATPase is 0.85 ± 0.1 μM Ca2+ as compared to 8.0 ± 0.75 μM Ca2+ before digestion and is statistically significantly different from Ca = 1.66 ± 0.22 μM Ca2+ observed in activation by a saturating calmodulin concentration. Addition of calmodulin to the trypsinized enzyme has neither an effect on the Ca2+-affinity nor achieves any large increase of the maximal rate.High Ca2+ concentrations (above 0.05 – 0.1 mM) after trypsin treatment still inhibit the (Ca2+ + Mg2+)-ATPase activity. Mg2+ activates in the same concentration range ( Mg = 25 μM) as in the undigested preparation ( Mg = 27 μM) and retains its competitive behaviour towards Ca2+ after trypsin treatment.It is concluded that (1) trypsin treatment unmasks high affinity sites for Ca2+ ( Ca 1 μM) and that, therefore, such sites are not added to the system by calmodulin, and (2) that inhibition by high Ca2+-concentrations is not due to Ca - Mg competition at sites located on the calmodulin molecule.  相似文献   

2.
Stimulation of the calmodulin-independent activity of the red cell Ca2+-pump ATPase by trypsin treatment (of calmodulin free red cell membranes) is sensitive to Ca2+ in a concentration range near the KCa of the transport site. The Ca2+ requirement for this effect is absolute, whereas the calmodulin sensitivity of the ATPase can be abolished by sufficient trypsin attack in the absence of Ca2+, although Ca2+ accelerates inactivation. This indicates that the two effects of trypsin are due to at least two distinct cleavage sites in the pump protein.  相似文献   

3.
4.
The aim of this study was to estimate effects of some chemotherapy drugs on the elasticity and deformability of the membrane of a red blood cell (RBC). It was found that incubation of red blood cells (RBCs) with cisplatin or epoetin alpha led to considerable (by 10–17%; p < 0.05) increase in the RBC deformability and that cisplatin could activate tyrosine protein kinases (TPKs). Preincubation of RBCs with a specific inhibitor of EGF-R and Src kinase, lavendustin A, almost completely prevented the cisplatin effect. Tyrosine phosphatase inhibitor, sodium orthovanadate, increased the RBC deformability (p < 0.05). This effect was also abandoned by lavendustin A. To test a hypothesis on the involvement of protein kinases of mature RBCs in control of their membrane elasticity, the cells were incubated with phorbol 12-myristate 13-acetate (PMA) activating protein kinase Cα (PKCα). PMA increased the RBC deformability only moderately (by 8%, p < 0.05) and the effect was canceled by nonselective and selective PKC inhibitors staurosporin and 4-(1-methylindol-3-yl)maleimide hydrochloride. Erythropoietin is known to inhibit the nonselective cation channels of the RBC membrane; however, preincubation of the cells with verapamil did not cancel the increase in their deformability. Hence, this increase in deformability could be a result of the action of tyrosine protein kinases, the more so that this effect was almost completely canceled by lavendustion A. The results suggest that the presence of functionally active protein kinases and phosphatases in the membranes of mature RBC makes them a target for the addressed effects of signal molecules, including some chemotherapy drugs, causing consecutive alterations in the RBC membrane elasticity, microrheological properties, and transport potential.  相似文献   

5.
G A Plishker 《Cell calcium》1984,5(2):177-185
Elevation of red blood cell calcium increases the efflux of potassium. The active extrusion of calcium from the red cell is regulated by calmodulin. Phenothiazines bind to calmodulin in a calcium-dependent manner preventing the calmodulin from activating a wide variety of cellular processes. The present study shows that phenothiazines increase the efflux of potassium from red cells incubated with the calcium ionophore A23187. The dose dependent effect of trifluoperazine on potassium efflux correlates with its inhibition of Ca-ATPase activity. The phenothiazine effects are dependent upon ATP in that increases in potassium efflux are not observed in energy depleted cells. In calcium buffered ghosts no direct effect of calmodulin or an antibody to calmodulin can be shown. These data suggest that phenothiazines stimulate calcium-dependent potassium loss indirectly by a drug-induced blockage of the calmodulin-activated Ca-ATPase.  相似文献   

6.
Ca2+-pump ATPase activities of membranes isolated from human and dog RBCs were compared under a variety of conditions. Specific activity of the dog enzyme was less than that of human. Unlike the human enzyme, the dog Ca2+-pump ATPase was not stimulated by exogenously added calmodulin (CaM) or oleate. The Ca2+ dependence of the dog Ca2+-pump ATPase resembled that of the CaM-activated form of the human enzyme. Cross-linking of Azido-125I-CaM to dog RBC membranes did not label a Ca2+-pump ATPase of molecular weight similar to that found in human RBC membranes. It is suggested that the Ca2+-pump ATPase in isolated dog RBC membranes exists in an activated state, not due to endogenous CaM, but possibly due to partial proteolysis.  相似文献   

7.
8.
9.
Using human red cell ghosts, it was shown that external phlorizin inhibits Cl and I equilibrium exchange. Internal phlorizin has little effect on I exchange and no detectable effect on Cl exchange. This asymmetry is similar to that observed with the much more slowly exchanging SO42− and different from that of sugars like l-arabinose or d-xylose which are inhibited by phlorizin from either surface.  相似文献   

10.
Caldesmon, an actin/calmodulin binding protein, inhibits acto-heavy meromyosin (HMM) ATPase, while it increases the binding of HMM to actin, presumably mediated through an interaction between the myosin subfragment 2 region of HMM and caldesmon, which is bound to actin. In order to study the mechanism for the inhibition of acto-HM ATPase, we utilized the chymotryptic fragment of caldesmon (38-kDa fragment), which possesses the actin/calmodulin binding region but lacks the myosin binding portion. The 38-kDa fragment inhibits the actin-activated HMM ATPase to the same extent as does the intact caldesmon molecule. In the absence of tropomyosin, the 38-kDa fragment decreased the KATPase and Kbinding without any effect on the Vmax. However, when the actin filament contained bound tropomyosin, the caldesmon fragment caused a 2-3-fold decrease in the Vmax, in addition to lowering the KATPase and the Kbinding. The 38-kDa fragment-induced inhibition is partially reversed by calmodulin at a 10:1 molar ratio to caldesmon fragment; the reversal was more remarkable in 100 mM ionic strength at 37 degrees C than in 20 or 50 mM at 25 degrees C. Results from these experiments demonstrate that the 38-kDa domain of caldesmon fragment of myosin head to actin; however, when the actin filament contains bound tropomyosin, caldesmon fragment affects not only the binding of HMM to/actin but also the catalytic step in the ATPase cycle. The interaction between the 38-kDa domain of caldesmon and tropomyosin-actin is likely to play a role in the regulation of actomyosin ATPase and contraction in smooth muscle.  相似文献   

11.
The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2,450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.  相似文献   

12.
In inside-out human red cell membrane vesicles /IOV/, in the absence of Mg2+, the only calcium-induced labelling by γ32P-ATP occurs in a 140–150 000 molecular weight protein fraction, representing the hydroxylamine-sensitive phosphorylated intermediate /EP/ of the calcium pump. In the presence of Mg2+ calcium-induced phosphorylation is accelerated but several other membrane proteins are also phosphorylated through protein kinase action forming hydroxylamine-insensitive bonds. Addition of calmodulin accelerates EP formation both in the absence and presence of Mg2+.Treatment of the membrane with SH-group reagents significantly reduces EP formation. Mild trypsin digestion of IOVs, stimulating active calcium transport, eliminates calmodulin action and decreases the steady-state level of EP. In trypsin-digested IOVs the molecular weight of the 32P-labelled EP is shifted to lower values /110–120 000/ We suggest that trypsin digestion cleaves off a 20–40 000 molecular weight calmodulin-binding regulatory subunit of the calcium pump molecule.  相似文献   

13.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

14.
Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method—miRNA Polysome Shift Assay (miPSA)—for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used ‘RT-interference’ approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences.  相似文献   

15.
The selective increase of net K+ permeability in human red cells brought about by either Ca2+ or lead was studied using a light scattering technique to measure net K+ fluxes in cell suspensions and the patch-clamp technique to study K+ transport in individual K+-selective channels of the red cell membrane. Using ultrapure solutions it was demonstrated that the effect of lead is neither the indirect consequence of a lead-induced increase of the accessibility of the receptor sites of the K+-selective channels to traces of Ca2+ that are present as contamination in analytical grade reagents nor to the release of Ca2+ from intracellular Ca2+ stores. It is further shown that in cell-free membrane patches low concentrations of lead (10 microM) in Suprapur solutions evoke the same single-channel events as added Ca2+ and that this activity can be inhibited by high concentrations of lead (100 microM), similar to the net KCl efflux measured by means of the light scattering technique. It is concluded, therefore, that both Ca2+ and lead independently activate the same K+-selective channels in the red cell membrane.  相似文献   

16.
17.
The importance of Ca++ in the initiation of lymphocyte activation and mitogenesis has been supported by several studies. Because calmodulin functions as the intracellular mediator of the effects of Ca++, it likely plays a major role in the regulation of lymphocyte function. We have examined the effects of known calmodulin antagonists, the phenothiazines, on lectin-induced T cell mitogenesis and have shown a central role for Ca++ uptake in the expression of a phenothiazine-sensitive stage after lectin activation. The drug effects were observed only if the cells were previously activated by PHA or the ionophore A23187, and only in the presence of Ca++. These effects were restricted to a defined time period (5 hr) after lectin activation. The data support the concept that calmodulin is the target for the phenothiazine effects and demonstrate the permissive role of Ca++ in the mediation of these events.  相似文献   

18.
19.
Cochran JC  Gilbert SP 《Biochemistry》2005,44(50):16633-16648
The ATPase mechanism of kinesin superfamily members in the absence of microtubules remains largely uncharacterized. We have adopted a strategy to purify monomeric human Eg5 (HsKSP/Kinesin-5) in the nucleotide-free state (apoEg5) in order to perform a detailed transient state kinetic analysis. We have used steady-state and presteady-state kinetics to define the minimal ATPase mechanism for apoEg5 in the absence and presence of the Eg5-specific inhibitor, monastrol. ATP and ADP binding both occur via a two-step process with the isomerization of the collision complex limiting each forward reaction. ATP hydrolysis and phosphate product release are rapid steps in the mechanism, and the observed rate of these steps is limited by the relatively slow isomerization of the Eg5-ATP collision complex. A conformational change coupled to ADP release is the rate-limiting step in the pathway. We propose that the microtubule amplifies and accelerates the structural transitions needed to form the ATP hydrolysis competent state and for rapid ADP release, thus stimulating ATP turnover and increasing enzymatic efficiency. Monastrol appears to bind weakly to the Eg5-ATP collision complex, but after tight ATP binding, the affinity for monastrol increases, thus inhibiting the conformational change required for ADP product release. Taken together, we hypothesize that loop L5 of Eg5 undergoes an "open" to "closed" structural transition that correlates with the rearrangements of the switch-1 and switch-2 regions at the active site during the ATPase cycle.  相似文献   

20.
In calmodulin-stripped inside-out human red cell membrane vesicles /IOV/ ATP + Mg2+-dependent active calcium uptake is stimulated by the addition of calmodulin. Calmodulin increases the maximum calcium transport rate /Vmax/, decreases KCa, and does not affect KATP of calcium uptake. The action of both membrane bound and external calmodulin is competitively inhibited by phenothiazines. Drugs reacting with SH groups of proteins reversibly inhibit calcium pumping by decreasing Vmax and not affecting KCa and KATP. The relative magnitude of calmodulin stimulation of calcium transport is unaltered by SH reagents.Mild proteolytic digestion of IOVs stimulates active calcium uptake and mimics the effects of calmodulin on the kinetic parameters — that is converts the system to a “high calcium-affinity” state. Proteolysis eliminates calcium-dependent calmodulin binding to IOV membranes and any further stimulation of calcium uptake by calmodulin. Based on these results the presence of a calmodulin-binding regulatory subunit of the red cell calcium pump at the internal membrane surface is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号