首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A filamentous, gliding, thermophilic bacterium, found growing abundantly as a surface mat in a limited number of alkaline hot springs in Oregon, is described and designated F-1. The bacteria were studied in the field and in coculture with an aerobic chemoheterotroph. The bacteria are phototrophic and contain bacteriochlorophyll a and several carotenoid pigments. Unlike the other gliding phototrophic bacteria, members of the family Chloroflexaceae, F-1 does not contain chlorosomes or bacteriochlorophyll c or d. The light-dependent uptake of simple organic compounds (acetate and glucose) was demonstrated in field populations. Near-infrared radiation sustained this uptake, which occurred equally well under aerobic or anaerobic conditions and was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The bacteria formed conspicuous dominant mats from about 35 to 56°C, and they covered mats of cyanobacteria in the spring, summer, and autumn months. It appears that they depend on high light intensities to maintain a dense population.  相似文献   

2.
The multi-layered microbial mats in the sand flats of Great Sippewissett Salt Marsh were found to have five distinct layers of phototrophic organisms. The top 1–3 mm contained oxygenic phototrophs. The lower 3–4 mm contained anoxygenic phototrophic bacteria. The uppermost gold layer contained diatoms and cyanobacteria, and chlorophyll a was the major chlorophyll. The next layer down was green and was composed of primarily filamentous cyanobacteria containing chlorophyll a. This was followed by a bright pink layer of bacteriochlorophyll b-containing purple sulfur bacteria. The lowest layer was a thin dull green layer of green sulfur bacteria containing bacteriochlorophyll c. The distribution of the chlorophylls with depth revealed that two-thirds of the total chlorophyll in the mat was composed of bacteriochlorophylls present in the anoxygenic phototrophys. The cyanobacterial layers and both purple sulfur bacterial layers had photoautotrophic activity. Light was attenuated in the uppermost layers so that less than 5% of the total radiation at the surface penetrated to the layers of anoxygenic phototrophys.  相似文献   

3.
An unusual filamentous, gliding bacterium was found in a few hot springs in Oregon where it formed a nearly unispecific top layer of microbial mats. It contained a bacteriochlorophyll a-like pigment and an abundance of carotenoids. There were no chlorosomes or additional chlorophylls. The organism was aerotolerant and appeared to be photoheterotrophic. It was successfully co-cultured with an aerobic chemoheterotroph in a medium containing glucose and casamino acids. Although it has many characteristics in common with the genus Chloroflexus, the lack of chlorosomes and bacteriochlorophyll c and the aerobic nature of this organism indicate that it should be placed in a new genus. This conclusion is supported by 5S rRNA nucleotide sequence data.  相似文献   

4.
A novel cytochrome c4, the first of this type in purple phototrophic bacteria has been discovered in Thiocapsa roseopersicina. The fact that cytochrome c4 has been found in an anaerobic organism puts in question the up hereto suggested role of cytochromes c4 in the aerobic respiratory metabolism. The structure of cytochrome c4 was studied under both aerobic and anaerobic conditions, using differential scanning calorimetry and a combination of redox potentiostatic measurements with CD and UV-Vis absorption techniques. Cytochrome c4 maintained its functional capability at high temperature (60 °C) if it was kept under anaerobic conditions. With increasing temperature under aerobic conditions, however, there are dramatic conformational changes in the protein and coordination changes on the iron side. Presumably oxygen binds to the iron at the position left vacant by the methionine and facilitates conformational changes with low reversibility.  相似文献   

5.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

6.
J.N. Hawthorne 《FEBS letters》1983,156(1):196-200
Adenine, cytidine and guanosine nucleotides were supplied to cultures of Rhodopseudomonas capsulata under aerobic heterotrophic and phototrophic growth conditions. Aerobic growth is not affected by exogenous nucleotides (up to 10 mM) whereas phototrophic growth is strongly inhibited by adenine but not by guanosine or cytidine nucleotides. During phototrophic growth there is an inverse relationship between the concentration of exogenous adenine nucleotides and photopigment synthesis. There are no statistically significant differences between the inhibitory effect of AMP, ADP and ATP on the growth rate and bacteriochlorophyll synthesis since adenine nucleotides are incorporated into the cell as AMP by means of the phosphoribosyl transferase system.  相似文献   

7.
For three species of anoxygenic phototrophic alphaproteobacteria differing in their reaction to oxygen and light, physiological characteristics (capacity for acetate assimilation, activity of the tricarboxylic acid (TCA) cycle enzymes, respiration, and the properties of the oxidase systems) were studied. Nonsulfur purple bacteria Rhodobacter sphaeroides, Rhodobaca bogoriensis, and aerobic anoxygenic phototrophic bacteria Roseinatronobacter thiooxidans were the subjects of investigation. All of these organisms were able to grow under aerobic conditions in the dark using the respiratory system with cytochrome aa 3 as the terminal oxidase. They differed, however, in their capacity for growth in the light, bacteriochlorophyll synthesis, and regulation of activity of the TCA cycle enzymes. Oxygen suppressed bacteriochlorophyll synthesis by Rha. sphaeroides and Rbc. bogoriensis both in the dark and in the light. Bacteriochlorophyll synthesis in Rna. thiooxidans occurred only in the dark and was suppressed by light. The results on acetate assimilation by the studied strains reflected the degree of their adaptation to aerobic growth in the dark. Acetate assimilation by light-grown Rha. sphaeroides was significantly higher than by the dark-grown ones. Unlike Rha. sphaeroides, acetate assimilation by Rbc. bogoriensis in the light under anaerobic and aerobic conditions was much less dependent on the growth conditions. Aerobic acetate assimilation by all studied bacteria was promoted by light. In Rha. sphaeroides, activity of the TCA cycle enzymes increased significantly in the cells grown aerobically in the dark. In Rbc. bogoriensis, activity of most of the TCA cycle enzymes under aerobic conditions either decreased or remained unchanged. Our results confirm the origin of modern chemoorganotrophs from anoxygenic phototrophic bacteria. The evolution from anoxygenic photoorganotrophs to aerobic chemoorganotrophs included several stages: nonsulfur purple bacteria → nonsulfur purple bacteria similar to Rbc. bogoriensis → aerobic anoxygenic phototrophs → chemoorganotrophs.  相似文献   

8.
A method was developed for the isolation of photosynthetic mutants of Euglena gracilis. It consists of the following steps. (a) Incubation of the cells under phototrophic conditions in the presence of 3 (3,4-dichlorophenyl)-1, 1-dimethylurea for 1 week. This step caused a drastic reduction in the number of chloroplasts per cell; (b) mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine; (c) phototrophic growth for a few days to allow for phenotype expression; (d) selection by incubation in the presence of arsenate under phototrophic conditions for 2 days; (e) plating and growth under photoorganotrophic conditions; (f) assay of green colonies for ability to evolve oxygen. About 10% of the green colonies were found to be deficient in their ability to evolve oxygen. In principle the method may prove suitable for the isolation of other types of mutants of Euglena.  相似文献   

9.
Chloroflexus aurantiacus J-10-fl is a thermophilic green bacterium, a filamentous anoxygenic phototroph, and the model organism of the phylum Chloroflexi. We applied high-throughput, liquid chromatography–mass spectrometry in a global quantitative proteomics investigation of C. aurantiacus cells grown under oxic (chemoorganoheterotrophically) and anoxic (photoorganoheterotrophically) redox states. Our global analysis identified 13,524 high-confidence peptides that matched to 1,286 annotated proteins, 242 of which were either uniquely identified or significantly increased in abundance under photoheterotrophic culture condition. Fifty-four of the 242 proteins are previously characterized photosynthesis-related proteins, including chlorosome proteins, proteins involved in the bacteriochlorophyll biosynthesis, 3-hydroxypropionate (3-OHP) CO2 fixation pathway, and components of electron transport chains. The remaining 188 proteins have not previously been reported. Of these, five proteins were found to be encoded by genes from a novel operon and observed only in photoheterotrophically grown cells. These proteins candidates may prove useful in further deciphering the phototrophic physiology of C. aurantiacus and other filamentous anoxygenic phototrophs.  相似文献   

10.
We studied the diversity of Chloroflexus-like bacteria (CLB) in a hypersaline phototrophic microbial mat and assayed their near-infrared (NIR) light-dependent oxygen respiration rates. PCR with primers that were reported to specifically target the 16S rRNA gene from members of the phylum Chloroflexi resulted in the recovery of 49 sequences and 16 phylotypes (sequences of the same phylotype share more than 96% similarity), and 10 of the sequences (four phylotypes) appeared to be related to filamentous anoxygenic phototrophic members of the family Chloroflexaceae. Photopigment analysis revealed the presence of bacteriochlorophyll c (BChlc), BChld, and γ-carotene, pigments known to be produced by phototrophic CLB. Oxygen microsensor measurements for intact mats revealed a NIR (710 to 770 nm) light-dependent decrease in aerobic respiration, a phenomenon that we also observed in an axenic culture of Chloroflexus aurantiacus. The metabolic ability of phototrophic CLB to switch from anoxygenic photosynthesis under NIR illumination to aerobic respiration under non-NIR illumination was further used to estimate the contribution of these organisms to mat community respiration. Steady-state oxygen profiles under dark conditions and in the presence of visible (VIS) light (400 to 700 nm), NIR light (710 to 770 nm), and VIS light plus NIR light were compared. NIR light illumination led to a substantial increase in the oxygen concentration in the mat. The observed impact on oxygen dynamics shows that CLB play a significant role in the cycling of carbon in this hypersaline microbial mat ecosystem. This study further demonstrates that the method applied, a combination of microsensor techniques and VIS and NIR illumination, allows rapid establishment of the presence and significance of CLB in environmental samples.  相似文献   

11.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

12.
13.
A succinate-mineral salts medium of pH 5.2 provided selective enrichment conditions for Rhodomicrobium vannielii and for a new species belonging to the Athiorhodaceae, described herein as Rhodopseudomonas acidophila. Seven strains of the new species have been isolated from different sources in the United States and Germany. The cells are rod-shaped or ovoid, 1.0 to 1.3 μm wide and 2 to 5 μm long, and motile by means of polar flagella. Multiplication occurs by budding. The photopigments consist of bacteriochlorophyll a and carotenoids of the spirilloxanthin series, together with new carotenoids. All strains can grow either under anaerobic conditions in the light or under microaerophilic to aerobic conditions in the dark. No growth factors are required. The range of simple organic substrates photo-assimilated resembles that characteristic of Rhodomicrobium. Good photolithotrophic growth is possible at the expense of molecular hydrogen; thiosulfate and sulfide are not utilized.  相似文献   

14.
The orientation of pigments and pigment-protein complexes of the green photosynthetic bacterium Prosthecochloris aestuarii was studied by measurement of linear dichroism spectra at 295 and 100 K. Orientation of intact cells and membrane vesicles (Complex I) was obtained by drying on a glass plate. The photochemically active pigment-protein complexes (photosystem-protein complex and reaction center pigment-protein complex) and the antenna bacteriochlorophyll a protein were oriented by pressing a polyacrylamide gel. The data indicate that the near-infrared transitions (Qy) of bacteriochlorophyll c and most bacteriochlorophyll a molecules have a relatively parallel orientation to the membrane, whereas the Qy transitions of the bacteriochlorophyll a in the antenna protein are oriented predominantly perpendicularly to the membrane. Carotenoids and the Qx transitions (590–620 nm) of bacteriochlorophyll a, not belonging to the bacteriochlorophyll a protein, have a relatively perpendicular orientation to the membrane. The absorption and linear dichroism spectra indicate the existence of different pools of bacteriochlorophyll c in the chlorosomes and of carotenoid and bacteriopheophytin c in the cell membrane. The results suggest that the photosystem-protein and reaction center pigment-protein complexes are oriented with their short axes approximately perpendicular to the plane of the membrane. The symmetry axis of the bacteriochlorophyll a protein has an approximately perpendicular orientation.  相似文献   

15.
Candidatus Chloracidobacterium (Cab.) thermophilum is a recently discovered aerobic chlorophototroph belonging to the phylum Acidobacteria. From analyses of genomic sequence data, this organism was inferred to have type-1 homodimeric reaction centers, chlorosomes, and the bacteriochlorophyll (BChl) a-binding Fenna–Matthews–Olson protein (FMO). Here, we report the purification and characterization of Cab. thermophilum FMO. Absorption, fluorescence emission, and CD spectra of the FMO protein were measured at room temperature and at 77 K. The spectroscopic features of this FMO protein were different from those of the FMO protein of green sulfur bacteria (GSB) and suggested that exciton coupling of the BChls in the FMO protein is weaker than in FMO of GSB especially at room temperature. HPLC analysis of the pigments extracted from the FMO protein only revealed the presence of BChl a esterified with phytol. Despite the distinctive spectroscopic properties, the residues known to bind BChl a molecules in the FMO of GSB are well conserved in the primary structure of the Cab. thermophilum FMO protein. This suggests that the FMO of Cab. thermophilum probably also binds seven or possibly eight BChl a(P) molecules. The results imply that, without changing pigment composition or structure dramatically, the FMO protein has acquired properties that allow it to perform light harvesting efficiently under aerobic conditions.  相似文献   

16.
The phototrophic purple non-sulfur bacterium Rhodomicrobium vannielii grew phototrophically (illuminated anaerobic conditions) on a variety of aromatic compounds (in the presence of CO2). Benzoate was universally photocatabolized by all five strains of R. vannielii examined, and benzyl alcohol was photocatabolized by four of the five strains. Catabolism of benzyl alcohol by phototrophic bacteria has not been previously reported. Other aromatic substrates supporting reasonably good growth of R. vannielii strains were the methoxylated benzoate derivatives vanillate (4-hydroxy-3-methoxybenzoate) and syringate (4-hydroxy-3,5-dimethoxybenzoate). However, catabolism of vanillate and syringate led to significant inhibition of bacteriochlorophyll synthesis in R. vannielii cells, eventually causing cultures to cease growing. No such effect on photopigment synthesis in cells grown on benzoate or benzyl alcohol was observed. Along with a handful of other species of anoxygenic phototrophic bacteria, the ability of the species R. vannielii to photocatabolize aromatic compounds indicates that this organism may also be ecologically significant as a consumer of aromatic derivatives in illuminated anaerobic habitats in nature.  相似文献   

17.
Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria (Chloroflexales), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.  相似文献   

18.
This study investigated the culturable aerobic phototrophic bacteria present in soil samples collected in the proximity of the Belgian Princess Elisabeth Station in the Sør Rondane Mountains, East Antarctica. Until recently, only oxygenic phototrophic bacteria (Cyanobacteria) were well known from Antarctic soils. However, more recent non-cultivation-based studies have demonstrated the presence of anoxygenic phototrophs and, particularly, aerobic anoxygenic phototrophic bacteria in these areas. Approximately 1000 isolates obtained after prolonged incubation under different growth conditions were studied and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Representative strains were identified by sequence analysis of 16S rRNA genes. More than half of the isolates grouped among known aerobic anoxygenic phototrophic taxa, particularly with Sphingomonadaceae, Methylobacterium and Brevundimonas. In addition, a total of 330 isolates were tested for the presence of key phototrophy genes. While rhodopsin genes were not detected, multiple isolates possessed key genes of the bacteriochlorophyll synthesis pathway. The majority of these potential aerobic anoxygenic phototrophic strains grouped with Alphaproteobacteria (Sphingomonas, Methylobacterium, Brevundimonas and Polymorphobacter).  相似文献   

19.
《BBA》1986,848(1):77-82
Isolated chlorosomes of the photosynthetic green sulfur bacterium Chorobium limicola upon cooling to 4 K showed, in addition to the near-infrared absorption band at 753 nm due to bacteriochlorophyll c, a weak band near 800 nm that could be attributed to bacteriochlorophyll a. The emission spectrum showed bands of bacteriochlorophyll c and a at 788 and 828 nm, respectively. The fluorescence excitation spectrum indicated a high efficiency of energy transfer from bacteriochlorophyll c to bacteriochlorophyll a. When all bacteriochlorophyll c absorption had been lost upon storage, no appreciable change in the optical properties of the bacteriochlorophyll a contained in these ‘depleted chlorosomes’ was observed. The fluorescence and absorption spectra of the chlorosomal bacteriochlorophyll a were clearly different from those of the soluble bacteriochlorophyll a protein present in these bacteria. The results provide strong evidence that bacteriochlorophyll a, although present in a small amount, is an integral constituent of the chlorosome. It presumably functions in the transfer of energy from the chlorosome to the photosynthetic membrane; its spectral properties and the orientation of its near-infrared optical transitions as determined by linear dichroism are such as to favor this energy transfer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号