首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Nine normal young men inhaled boluses of He at the onset of slow vital capacity (VC) inspirations. During the subsequent VC expirations, we measured expired flow, volume, and He concentrations. Expirations consisted of full or partial maximum expiratory flow-volume (MEFV) maneuvers. Full maneuvers were forced expirations from total lung capacity (TLC). Partial maneuvers were accomplished by expiring slowly from TLC to 70, 60, 50, and 40% VC and then initiating forced expiration. Expired He concentrations from full and partial maneuvers were compared with each other and with those resulting from slow expirations. At comparable volumes less than 50% VC, flow during partial and full MEFV maneuvers did not differ. Expired He concentrations were higher during partial maneuvers than during full ones; at the onset of partial maneuvers upper zone emptying predominated, whereas this was not the case at the same lung volumes during maneuvers initiated at TLC. We observed substantial differences in regional emptying sequence that did not influence maximum expiratory flow.  相似文献   

2.
We studied lung mechanics and regional lung function in five young men during restrictive chest strapping. The effects on lung mechanics were similar to those noted by others in that lung elastic recoil increased as did maximum expiratory flow at low lung volumes. Chest strapping reduced the maximum expiratory flow observed at a given elastic recoil pressure. Breathing helium increased maximum expiratory flow less when subjects were strapped than when they were not. These findings indicated that strapping decreased the caliber of airways upstream from the equal pressure point. Regional lung volumes from apex to base were measured with xenon 133 while subjects were seated. The distribution of regional volumes was measured at RV, and at volumes equal to strapped FRC and strapped TLC; no change due to chest strapping was observed. Similarly, the regional distribution of 133Xe boluses inhaled at RV and strapped TLC was unaffected by chest strapping. Closing capacity decreased with chest strapping. We concluded that airway closure decreased during chest strapping and that airway closure was not the cause of the observed increase in elastic recoil of the lung. The combination of decreased slope of the static pressure-volume curve and unchanged regional volumes suggested that strapping increased the apex-to-base pleural pressure gradient.  相似文献   

3.
We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and microG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in microG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.  相似文献   

4.
Pharyngeal cross-sectional area in normal men and women   总被引:4,自引:0,他引:4  
Pharyngeal size and the dynamic behavior of the upper airway may be important factors in modulating respiratory airflow. Patients with obstructive sleep apnea are known to have reduced pharyngeal cross-sectional area. However, no systematic measurements of pharyngeal area in healthy asymptomatic subjects are available, in part due to the lack of simple, rapid, and noninvasive measurement techniques. We utilized the acoustic reflection technique to measure pharyngeal cross-sectional area in 24 healthy volunteers (14 males, 10 females). Pharyngeal area was measured during a continuous slow expiration from total lung capacity (TLC) to residual volume (RV). We compared pharyngeal cross-sectional areas in males and females at three lung volumes: TLC, 50% of vital capacity (VC), and RV. In males, pharyngeal areas (means +/- SD) were 6.4 +/- 1.3 cm2 at TLC, 5.4 +/- 0.9 cm2 at 50% VC, and 4.1 +/- 0.8 cm2 at RV. In females, pharyngeal areas were 4.8 +/- 0.6 cm2 at TLC, 4.2 +/- 0.5 cm2 at 50% VC, and 3.7 +/- 0.6 cm2 at RV. The difference in area between males and females was statistically significant at TLC and 50% VC but not at RV. However, when the pharyngeal cross-sectional area was normalized for body surface area, this difference was not significant. In males there was a negative correlation of pharyngeal area with age. We conclude that sex differences in pharyngeal area are related to body size, pharyngeal area shows a similar variation with lung volumes in males and females, and in males pharyngeal area reduces with age.  相似文献   

5.
We studied the effect of body position in humans on the relationship between exhaled vital capacity (VC) and both helium (He) and nitrogen (N2) concentrations after delivery of an He bolus at residual volume (RV) followed by 100% oxygen to total lung capacity. Phase IV, defined as the % VC at the first sharp and permanent increase in N2 and He, occurred at a mean of 15.7% VC while seated, 60.0% VC in right lateral and 59.6% VC in left lateral positions. He bolus delivery above RV but well below 60% VC resulted in the disappearance of phase IV. Lung pressure-volume (PV) curves had inflections at the volume of phase IV in the seated position: but the inflections were well below phase IV in lateral positions. Phase IV increased to higher volumes at higher mouth pressures. The relationship between phase IV and mouth pressure fell near the respiratory system relaxation PV curves. The findings suggest the higher phase IV in lateral positions is due to sequence of emptying without airway closure and is influenced by active expiration.  相似文献   

6.
We studied the effect of volume history on airway closure in six healthy males ranging from 32 to 67 yr of age. The method used was to compare the regional distribution of 133Xe boluses distributed according to N2O uptake during open-glottis breath-hold maneuvers with the regional distribution of boluses of intravenously injected 133Xe. Measurements were made at two lung volumes, one close to residual volume (RV) and the other just below closing volume. The required volume was reached either by expiring from total lung capacity or by inspiring from RV. Although there was considerable airway closure in the basal regions of the lungs at both lung volumes studied, the degree of airway closure was not dependent on the previous volume history. We conclude that the airways concerned with closure have a volume-pressure hysteresis similar to that of the lung parenchyma. Furthermore in normal humans the volume-pressure hysteresis of the lung is not secondary to airway closure.  相似文献   

7.
In eight healthy volunteers we simultaneously measured the axial diaphragmatic motion by fluoroscopy and the cross-sectional area changes of the rib cage (RC) and abdomen (ABD) by Respitrace (RIP) during semistatic vital capacities (VC). We found that, if the fluoroscopic axial displacement of the posterior part of the diaphragm between residual volume (RV) and total lung capacity (TLC) is considered equal to 100%, the movement of the middle part is 90%, whereas that of the anterior part is only approximately 60%; the ratio of the axial displacements to mouth volume, furthermore, decreases at high lung volumes, especially for the anterior part. The RIP signal is nearly linearly related to mouth volume, but the contribution of the RC (delta RC) progressively increases (and is approximately 80% RIP at TLC), whereas the volume contribution of the ABD (delta ABD) levels off (to 20% RIP at TLC). The diaphragmatic volume displacement calculated from the theoretical analysis described by Mead and Loring also levels off at high volumes similarly as the ABD but is approximately 50% RIP at TLC. Finally, the axial movements of the three parts of the diaphragm are linearly related to the RC and ABD cross-sectional-area changes (r 0.91-0.97) and are even significantly better correlated with the "calculated" diaphragmatic volume displacement.  相似文献   

8.
The effects of increased gravity in the head-to-foot direction (+G(z)) and pressurization of an anti-G suit (AGS) on total and intraregional intra-acinar ventilation inhomogeneity were explored in 10 healthy male subjects. They performed vital capacity (VC) single-breath washin/washouts of SF(6) and He in +1, +2, or +3 G(z) in a human centrifuge, with an AGS pressurized to 0, 6, or 12 kPa. The phase III slopes for SF(6) and He over 25-75% of the expired VC were used as markers of total ventilation inhomogeneity, and the (SF(6) -- He) slopes were used as indicators of intraregional intra-acinar inhomogeneity. SF(6) and He phase III slopes increased proportionally with increasing gravity, but the (SF(6) -- He) slopes remained unchanged. AGS pressurization did not change SF(6) or He slopes significantly but resulted in increased (SF(6) -- He) slope differences at 12 kPa. In conclusion, hypergravity increases overall but not intraregional intra-acinar inhomogeneity during VC breaths. AGS pressurization provokes increased intraregional intra-acinar ventilation inhomogeneity, presumably reflecting the consequences of basilar pulmonary vessel engorgement in combination with compression of the basilar lung regions.  相似文献   

9.
The FRC, RV, VC, TLC, RV/TLC (%), FVC, FEV1.0, FEF25-75%, and FEV1.0/FVC (%) were measured in 161 South Australian females aged 18.4-81.2 yr using a Stead-Wells spirometer and helium analyzer. Multiple regression equations were generated to predict these lung volume and spirometric parameters from the best weighted combination of age, mass, standing height, and various other anthropometric variables (FRC: R = 0.715, SEE = 387 ml; RV: R = 0.684, SEE = 256 ml; VC: R = 0.815, SEE = 383 ml; TLC: R = 0.754, SEE = 468 ml; RV/TLC: R = 0.780, SEE = 4.2%; FVC: R = 0.839, SEE = 375 ml; FEV1.0: R = 0.869, SEE = 326 ml; FEV1.0/FVC: R = 0.644, SEE = 5.7%; FEF25-75%: R = 0.753, SEE = 802 ml/s). The range of normality for the lung volumes was defined as the predicted value plus or minus the 95% confidence interval (two-tailed test), and the lower limit of normality for the spirometric variables was designated as the predicted value minus the 95% confidence interval (one-tailed test). Cross-validation of other equations in the literature indicates that they are of limited use for the sample and instrumentation used in this study.  相似文献   

10.
Changes in the configuration of maximum expiratory flow-volume (MEFV) curves following mild degrees of bronchodilation or bronchoconstriction were studied in five normal and five asthmatic subjects. In a volume-displacement plethysmograph, MEFV curves were performed before and after inhalation of aerosolized isoproterenol (I) or histamine (H). Five filtered MEFV curves were averaged, and slope ratio vs. volume (SR-V) plots were obtained from averaged curves. Following I, maximal flows at 75% of the vital capacity (VC) were decreased in asthmatics but not in normal subjects. Flows at 50 and 25% of the VC increased in normal subjects and asthmatics, whereas VC's were unchanged. In asthmatics, sudden large decreases in flow (bumps) occurred at lower lung volumes following I. H reduced flows over the entire VC, with greater reductions occurring in asthmatics than in normals, particularly at low lung volumes. In asthmatics, VC was slightly reduced, and bumps in MEFV curve configuration occurred at higher lung volumes or were abolished entirely following H. A reduction in the amount of configurational detail appreciable in MEFV curves following histamine in asthmatics was best seen in SR-V plots. Following H, SR's decreased regularly with decreasing lung volume in all the asthmatics but in none of the normals. This was the single most striking finding of this study. Mild I- and H-induced perturbations of airway bronchomotor tone produced small but consistent changes in MEFV curve configuration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of breathing depth in attenuating induced bronchoconstriction were studied in 12 healthy subjects. On four separate, randomized occasions, the depth of a series of five breaths taken soon (approximately 1 min) after methacholine (MCh) inhalation was varied from spontaneous tidal volume to lung volumes terminating at approximately 80, approximately 90, and 100% of total lung capacity (TLC). Partial forced expiratory flow at 40% of control forced vital capacity (V(part)) and residual volume (RV) were measured at control and again at 2, 7, and 11 min after MCh. The decrease in V(part) and the increase in RV were significantly less when the depth of the five-breath series was progressively increased (P < 0.001), with a linear relationship. The attenuating effects of deep breaths of any amplitude were significantly greater on RV than V(part) (P < 0.01) and lasted as long as 11 min, despite a slight decrease with time when the end-inspiratory lung volume was 100% of TLC. In conclusion, in healthy subjects exposed to MCh, a series of breaths of different depth up to TLC caused a progressive and sustained attenuation of bronchoconstriction. The effects of the depth of the five-breath series were more evident on the RV than on V(part), likely due to the different mechanisms that regulate airway closure and expiratory flow limitation.  相似文献   

12.
This study evaluated the ability of aerosol-derived lung morphometry to noninvasively probe airway and acinar dimensions. Effective air-space diameters (EAD) were calculated from the time-dependent gravitational losses of 1-microns particles from inhaled aerosol boluses during breath holding. In 17 males [33 +/- 7 (SD) yr] the relationship between EAD and volumetric penetration of the bolus into the lungs (Vp) could be expressed by the linear power-law function, log (EAD) alpha beta log (Vp). Our EAD values were consistent with Weibel's symmetric lung model A for small airways and more distal air spaces. As lung volume increased from 57 to 87% of total lung capacity (TLC), EAD at Vp of 160 and 550 cm3 increased 70 and 41%, respectively. At 57% TLC, log (EAD) at 160 cm3 was significantly correlated with airway resistance (r = -0.57, P less than 0.0204) but not with forced expired flow between 25 and 75% of vital capacity. Log (EAD) at 400 cm3 was correlated with deposition of 1-micron particles (r = -0.73, P less than 0.0009). We conclude that aerosol-derived lung morphometry is a responsive noninvasive probe of peripheral air-space diameters.  相似文献   

13.
For pulmonary structure-function analysis excised rabbit lungs were fixed by vascular perfusion at six points on the pressure-volume (P-V) curve, i.e. at 40, 80, and 100% of total lung capacity (TLC) on inflation, at 80 and 40% TLC on deflation, and at 80% TLC on reinflation. Before fixation alveolar surface tensions (gamma) were measured in individual alveoli over the entire P-V loop, using an improved microdroplet method. A maximal gamma of approximately 30 mN/m was measured at TLC, which decreased during lung deflation to about 1 mN/m at 40% TLC. Surface tensions were considerably higher on the inflation limb starting from zero pressure than on the deflation limb (gamma-V hysteresis). In contrast, the corresponding alveolar surface area-volume (SA-V) relationship did not form a complete hysteresis over the entire volume range. There was a considerable difference in SA between lungs inflated to 40% TLC (1.49 +/- 0.11 m2) and lungs deflated to 40% TLC (2.19 +/- 0.21 m2), but at 80% TLC the values of SA were essentially the same regardless of the volume history. The data indicate that the gamma-SA hysteresis is only in part accountable for the P-V hysteresis and that the determinative factors of alveolar geometry change with lung volume. At low lung volumes airspace dimensions appear to be governed by an interplay between surface and tissue forces. At higher lung volumes the tissue forces become predominant.  相似文献   

14.
The regionaldeposition of particles in boluses delivered to shallow lung depths andtheir subsequent retention in the airways may depend on the lung volumeat which the boluses are delivered. To evaluate the effectof end-inspiratory lung volume on aerosol bolus delivery, we hadhealthy subjects inhale radiolabeled, monodisperse aerosol(99mTc-iron oxide, 3.5-µm massmedian aerodynamic diameter) boluses (40 ml) to a volumetric frontdepth of 70 ml into the lung at lung volumes of 50, 70, and 85% oftotal lung capacity (TLC) end inhalation. By gamma camera analysis, wefound significantly greater deposition in the left (L) vs. right (R)lungs at the 70 and 85% TLC end inhalation; ratio of deposition in Lto R lung, normalized to L-to-R ratio of lung volume (mean L/R), was1.60 ± 0.45 (SD) and 1.96 ± 0.72, respectively(P < 0.001 for comparison to 1.0) for posterior images. However, at 50% TLC, L/R was 1.23 ± 0.37, not significantly different from 1.0. These data suggest that the L andR lungs may be expanding nonuniformly at higher lung volumes. On theother hand, subsequent retention of deposited particles at 2 and 24 hpostdeposition was independent of L/R at the various lung volumes. Thusasymmetric bolus ventilation for these very shallow boluses does notlead to significant increases in peripheral alveolar deposition. Thesedata may prove useful for 1)designing aerosol delivery techniques to target bronchial airways and2) understanding airway retention ofinhaled particles.

  相似文献   

15.
We evaluate the non-linear characteristics of the human lung via image registration-derived local variables based on volumetric multi-detector-row computed tomographic (MDCT) lung image data of six normal human subjects acquired at three inflation levels: 20% of vital capacity (VC), 60% VC and 80% VC. Local variables include Jacobian (ratio of volume change) and maximum shear strain for assessment of lung deformation, and air volume change for assessment of air distribution. First, the variables linearly interpolated between 20% and 80% VC images to reflect deformation from 20% to 60% VC are compared with those of direct registration of 20% and 60% VC images. The result shows that the linearly-interpolated variables agree only qualitatively with those of registration (P<0.05). Then, a quadratic (or linear) interpolation is introduced to link local variables to global air volumes of three images (or 20% and 80% VC images). A sinusoidal breathing waveform is assumed for assessing the time rate of change of these variables. The results show significant differences between two-image and three-image results (P<0.05). The three-image results for the whole lung indicate that the peak of the maximum shear rate occurs at about 37% of the maximum volume difference between 20% and 80% VC, while the peaks for the Jacobian and flow rate occur at 50%. This is in agreement with accepted physiology whereby lung tissues deform more at lower lung volumes due to lower elasticity and greater compliance. Furthermore, the three-image results show that the upper and middle lobes, even in the recumbent, supine posture, reach full expansion earlier than the lower lobes.  相似文献   

16.
Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH(2)O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.  相似文献   

17.
Tracheal dimensions at total lung capacity (TLC) and residual volume (RV) were analyzed roentgenographically in 17 pairs of male adolescent twins (mean age 16.3 yr; 12 monozygotic pairs and 5 dizygotic pairs). Genetic factors dominated environmental traits in intra- as well as extrathoracic tracheal width at RV. Extrathoracic tracheal width at TLC was also governed by genetic components. Intrathoracic tracheal depth (anteroposterior diameter), length, and cross-sectional area did not seem to be genetically controlled at TLC and RV. Intrathoracic tracheal cross-sectional area increased by 14.4% and became more elliptical from RV to TLC, owing mainly to an increase in tracheal depth (16.7%). Increments from RV to TLC in tracheal depth but not width correlated with increases in lung width, depth, and height. Intrathoracic trachea was elongated 14% in association with increase in lung height from RV to TLC. At TLC, extrathoracic tracheal width was larger than intrathoracic tracheal width, but this dimension did not differ at RV. These results indicate that genetic factors influence, at least at RV, the tracheal rings more strongly than membranous parts. Intrathoracic tracheal depth but not width increases during inspiration in accordance with increase in lung volume. Extrathoracic tracheal width widens more than intrathoracic trachea from RV to TLC.  相似文献   

18.
The lung volume at which airway closure begins during expiration (closing volume, CV) can be measured 1) with a radioactive bolus inspired at residual volume (RV) and 2) with the single-breath N2 elimination test. In previous studies in dogs, we observed that N2 CV was systematically larger than 133Xe bolus CV (Xe CV) [N2 CV %vital capacity (VC) = 35 +/- 2.3 (SE) vs. Xe CV %VC = 24 +/- 2.2, P less than 0.01]. Because the regional RV in the dog is evenly distributed throughout the lung and all airways closed at RV, N2 CV is related to the regional distribution of the tracheal N2; differences between N2 and Xe CV could then be related to the size of the inhaled dead space. Simultaneous measurements of Xe and N2 CV were performed at various sites of Xe bolus injection while the regional distribution of the bolus was measured. Injections at the level of the carina increased Xe CV to a value (30 +/- 1.4%VC) near simultaneous N2 CV (32 +/- 1.5%VC) and increased the unevenness of regional distribution of the Xe bolus. The difference between N2 and Xe CV is then the result of the size of the inspired tracheal dead space. Moreover, comparisons between different values of Xe CV require injections of the boluses at the same distance from the carina.  相似文献   

19.
Inspiratory muscles during exercise: a problem of supply and demand   总被引:1,自引:0,他引:1  
The capacity of inspiratory muscles to generate esophageal pressure at several lung volumes from functional residual capacity (FRC) to total lung capacity (TLC) and several flow rates from zero to maximal flow was measured in five normal subjects. Static capacity was 126 +/- 14.6 cmH2O at FRC, remained unchanged between 30 and 55% TLC, and decreased to 40 +/- 6.8 cmH2O at TLC. Dynamic capacity declined by a further 5.0 +/- 0.35% from the static pressure at any given lung volume for every liter per second increase in inspiratory flow. The subjects underwent progressive incremental exercise to maximum power and achieved 1,800 +/- 45 kpm/min and maximum O2 uptake of 3,518 +/- 222 ml/min. During exercise peak esophageal pressure increased from 9.4 +/- 1.81 to 38.2 +/- 5.70 cmH2O and end-inspiratory esophageal pressure increased from 7.8 +/- 0.52 to 22.5 +/- 2.03 cmH2O from rest to maximum exercise. Because the estimated capacity available to meet these demands is critically dependent on end-inspiratory lung volume, the changes in lung volume during exercise were measured in three of the subjects using He dilution. End-expiratory volume was 52.3 +/- 2.42% TLC at rest and 38.5 +/- 0.79% TLC at maximum exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62-66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号